On the problem of reconstructing the coefficients of convergent multiple function series
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 283-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the reconstruction of the coefficients of rectangularly convergent multiple function series.
@article{IM2_2008_72_2_a3,
     author = {L. D. Gogoladze},
     title = {On the problem of reconstructing the coefficients of convergent multiple function series},
     journal = {Izvestiya. Mathematics },
     pages = {283--290},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a3/}
}
TY  - JOUR
AU  - L. D. Gogoladze
TI  - On the problem of reconstructing the coefficients of convergent multiple function series
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 283
EP  - 290
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a3/
LA  - en
ID  - IM2_2008_72_2_a3
ER  - 
%0 Journal Article
%A L. D. Gogoladze
%T On the problem of reconstructing the coefficients of convergent multiple function series
%J Izvestiya. Mathematics 
%D 2008
%P 283-290
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a3/
%G en
%F IM2_2008_72_2_a3
L. D. Gogoladze. On the problem of reconstructing the coefficients of convergent multiple function series. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 283-290. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a3/

[1] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] J. M. Ash, G. V. Welland, “Convergence, uniqueness and summability of multiple trigonometric series”, Trans. Amer. Math. Soc., 163 (1972), 401–436 | DOI | MR | Zbl

[3] A. A. Talalyan, “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 132:1 (1987), 104–130 ; A. A. Talalyan, “On the uniqueness of multiple trigonometric series”, Math. USSR-Sb., 60:1 (1988), 107–131 | MR | Zbl | DOI

[4] Sh. T. Tetunashvili, “O nekotorykh kratnykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 ; Sh. T. Tetunashvili, “On some multiple function series and solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Math. USSR-Sb., 73:2 (1992), 517–534 | MR | Zbl | DOI | Zbl

[5] G. G. Gevorkyan, “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 184:11 (1993), 91–130 ; G. G. Gevorkyan, “On uniqueness of multiple trigonometric series”, Sb. Math., 80:2 (1995), 335–365 | MR | Zbl | DOI

[6] L. D. Gogoladze, “O vosstanovlenii koeffitsientov skhodyaschikhsya kratnykh funktsionalnykh ryadov”, Reports of enlarged session of the seminar of I. N. Vekua Institute of Applied Mathematics (Tbilisi, 1992), 7, no. 2, Tbilisi University Press, Tbilisi, 1992, 20–22 | MR | Zbl

[7] L. D. Gogoladze, “On the restoration of the coefficients of convergent multiple functional series”, Abstracts Int. conference harmonic analysis and approximations, Yerevan, 1998, 22–23

[8] L. D. Gogoladze, “Ob ogranichennosti skhodyaschikhsya srednikh kratnykh funktsionalnykh ryadov”, Matem. zametki, 34:6 (1983), 845–855 | MR | Zbl

[9] V. G. Chelidze, Nekotorye metody summirovaniya dvoinykh ryadov i dvoinykh integralov, Izd-vo Tbilisskogo un-ta, Tbilisi, 1977 | MR | Zbl