$\Omega$-ultradistributions
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 207-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a generalization of Beurling's approach to the construction of ultradistribution theory in which Fourier transformation is a basic tool. We establish a structure theorem on the representation of ultradistributions and a theorem of Paley–Wiener–Schwartz type. We illustrate the key role of extending the weights determining the spaces from $N$-dimensional real space, on which they are originally defined, to $N$-dimensional complex space.
@article{IM2_2008_72_2_a0,
     author = {A. V. Abanin},
     title = {$\Omega$-ultradistributions},
     journal = {Izvestiya. Mathematics },
     pages = {207--240},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
TI  - $\Omega$-ultradistributions
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 207
EP  - 240
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a0/
LA  - en
ID  - IM2_2008_72_2_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%T $\Omega$-ultradistributions
%J Izvestiya. Mathematics 
%D 2008
%P 207-240
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a0/
%G en
%F IM2_2008_72_2_a0
A. V. Abanin. $\Omega$-ultradistributions. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 207-240. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a0/

[1] L. Schwartz, Théorie des distributions. I, II, Actualités Sci. Ind., Hermann, Paris, 1950, 1951 | MR | MR | Zbl | Zbl

[2] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 ; R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965 | Zbl | MR | Zbl

[3] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[4] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. I: Teoriya raspredelenii i analiz Fure, Mir, M., 1986 ; L. Hörmander, The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, 256, Springer-Verlag, Berlin, 1983 | MR | Zbl | MR | Zbl

[5] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, vyp. 2, Fizmatgiz, M., 1958 | MR | Zbl

[6] C. Roumieu, “Sur quelques extensions de la notion de distribution”, Ann. Sci. École Norm. Sup. (3), 77:1 (1960), 41–121 | MR | Zbl

[7] C. Roumieu, “Ultra-distributions définies sur $\mathbb R^n$ et sur certaines classes de variétés différentiables”, J. Anal. Math., 10 (1962), 153–192 | DOI | MR | Zbl

[8] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[9] Chin Ch'êng Chou, La transformation de Fourier complexe et l'équation de convolution, Lecture Notes in Math., 325, Springer-Verlag, Berlin–New York, 1973 | MR | Zbl

[10] H. Komatsu, “Ultradistributions, I. Structure theorems and a characterization”, J. Fac. Sci. Univ. Tokyo. Sect. IA, Math., 20 (1973), 25–105 | MR | Zbl

[11] A. Beurling, “Quasi-analyticity and general distributions. Lectures 4 and 5”, Amer. Math. Soc., Summer Inst., Stanford, 1961

[12] G. Björck, “Linear partial differential operators and generalized distributions”, Ark. Mat., 6:4–5 (1966), 351–407 | DOI | MR | Zbl

[13] I. Cioranescu, L. Zsidó, “$\omega$-ultradistributions and their applications to operator theory”, Spectral Theory (Warsaw, 1977), 8, Banach Center Publ., Warsaw, 1982, 77–220 | MR | Zbl

[14] R. W. Braun, R. Meise, B. A. Taylor, “Ultradifferentiable functions and Fourier analysis”, Results Math., 17:3–4 (1990), 206–237 | MR | Zbl

[15] R. W. Braun, R. Meise, D. Vogt, “Characterization of the linear partial differential operators with constant coefficients which are surjective on nonquasianalytic classes of Roumieu type on $\mathbb R^N$”, Math. Nachr., 168 (1994), 19–54 | MR | Zbl

[16] T. Meyer, “Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type”, Studia Math., 125:2 (1997), 101–129 | MR | Zbl

[17] J. Bonet, R. W. Braun, R. Meise, B. A. Taylor, “Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions”, Studia Math., 99:2 (1991), 155–184 | MR | Zbl

[18] A. V. Abanin, “On Whitney's extension theorem for spaces of ultradifferentiable functions”, Math. Ann., 320:1 (2001), 115–126 | DOI | MR | Zbl

[19] J. Bonet, R. Meise, “Ultradistributions of Roumieu type and projective descriptions”, J. Math. Anal. Appl., 255:1 (2001), 122–136 | DOI | MR | Zbl

[20] A. V. Abanin, “Spaces of $\Omega$-ultradifferentiable functions and $\Omega$-ultradistributions”, Dokl. Math., 71:2 (2005), 260–263 | MR | MR

[21] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 ; A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics and Mathematical Physics, 53, Cambridge University Press, New York, 1964 | MR | Zbl | MR | Zbl

[22] V. V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet–Schwartz and dual Fréchet–Schwartz spaces”, Russian Math. Surveys, 34:4 (1979), 105–143 | DOI | MR | Zbl

[23] A. Grothendieck, “Sur les espaces $(F)$ et $(DF)$”, Summa Brasil. Math., 3 (1954), 57–123 | MR | Zbl

[24] B. M. Makarov, “Ob induktivnykh predelakh normirovannykh prostranstv”, Vestnik LGU, 20:13 (1965), 50–58 | MR | Zbl

[25] R. Meise, D. Vogt, Einführung in die Funktionalanalysis, Vieweg Studium: Aufbaukurs Mathematik, 62, Vieweg, Braunschweig, 1992 | MR | Zbl

[26] A. Baernstein II, “Representation of holomorphic functions by boundary integrals”, Trans. Amer. Math. Soc., 160 (1971), 27–37 | DOI | MR | Zbl

[27] R. P. Boas, Entire functions, Academic Press, New York, 1954 | MR | Zbl