Homotopy classification of~elliptic~operators on stratified manifolds
Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1167-1192.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a homotopy classification of elliptic operators on a stratified manifold. Namely, we establish an isomorphism between the set of elliptic operators modulo stable homotopy and the $K$-homology group of the manifold. By way of application, we obtain an explicit formula for the obstruction of Atiyah–Bott type to the existence of Fredholm problems in the case of stratified manifolds.
@article{IM2_2007_71_6_a4,
     author = {V. E. Nazaikinskii and A. Yu. Savin and B. Yu. Sternin},
     title = {Homotopy classification of~elliptic~operators on stratified manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {1167--1192},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a4/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - Homotopy classification of~elliptic~operators on stratified manifolds
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1167
EP  - 1192
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a4/
LA  - en
ID  - IM2_2007_71_6_a4
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A A. Yu. Savin
%A B. Yu. Sternin
%T Homotopy classification of~elliptic~operators on stratified manifolds
%J Izvestiya. Mathematics 
%D 2007
%P 1167-1192
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a4/
%G en
%F IM2_2007_71_6_a4
V. E. Nazaikinskii; A. Yu. Savin; B. Yu. Sternin. Homotopy classification of~elliptic~operators on stratified manifolds. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1167-1192. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a4/

[1] M. F. Atiyah, “Global theory of elliptic operators”, Functional analysis and related topics, Proc. Int. Conf. (Tokyo 1969), Univ. Tokyo Press, Tokyo, 1970, 21–30 | MR | Zbl

[2] G. G. Kasparov, “Obobschennyi indeks ellipticheskikh operatorov”, Funkts. analiz i ego prilozh., 7:3 (1973), 82–83 | MR | Zbl

[3] L. Brown, R. Douglas, P. Fillmore, “Extensions of $C^*$-algebras and $K$-homology”, Ann. of Math. (2), 105:2 (1977), 265–324 | DOI | MR | Zbl

[4] I. M. Singer, “Future extensions of index theory and elliptic operators”, Prospects in mathematics (Princeton, NJ, 1970), Ann. of Math. Studies, 70, Princeton Univ. Press, Princeton, NJ, 1971, 171–185 | MR | Zbl

[5] A. Savin, “Elliptic operators on singular manifolds and $K$-homology”, $K$-Theory, 34:1 (2005), 71–98 | DOI | MR | Zbl

[6] C. Debord, J.-M. Lescure, “$K$-duality for pseudomanifolds with isolated singularities”, J. Funct. Anal., 219:1 (2005), 109–133 | DOI | MR | Zbl

[7] J.-M. Lescure, Elliptic symbols, elliptic operators and Poincare duality on conical pseudomanifolds, arXiv: math.OA/0609328 | MR

[8] V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, On the homotopy classification of elliptic operators on manifolds with edges, Preprint No 2004/16, Univ. Potsdam, Inst. Math., Potsdam, 2004; arXiv: math.OA/0503694

[9] R. Melrose, F. Rochon, “Index in $K$-theory for families of fibred cusp operators”, $K$-Theory, 37:1–2 (2006), 25–104 ; arXiv: math.DG/0507590 | DOI | MR | Zbl

[10] B. A. Plamenevskii, V. N. Senichkin, “O klasse psevdodifferentsialnykh operatorov v $\mathbb{R}^m$ i na stratifitsirovannykh mnogoobraziyakh”, Matem. sb., 191:5 (2000), 109–142 | MR | Zbl

[11] V. Nistor, A. Weinstein, P. Xu, “Pseudodifferential operators on differential groupoids”, Pacific J. Math., 189:1 (1999), 117–152 | MR | Zbl

[12] R. Lauter, B. Monthubert, V. Nistor, “Pseudodifferential analysis on continuous family groupoids”, Doc. Math., 5 (2000), 625–655 | MR | Zbl

[13] R. Melrose, “Pseudodifferential operators, corners, and singular limits”, Proceedings of the international congress of mathematicians (Kyoto, Japan, 1990), Math. Soc. Japan, Tokyo; Springer-Verlag, Tokyo, 1991, 217–234 | MR | Zbl

[14] R. Lauter, V. Nistor, “Analysis of geometric operators on open manifolds: a groupoid approach”, Quantization of singular symplectic quotients (Oberwolfach, Germany, 1999), Progr. Math., 198, Birkhäuser, Basel, 2001, 181–229 | MR | Zbl

[15] V. Nistor, “Pseudodifferential operators on non-compact manifolds and analysis on polyhedral domains”, Spectral geometry of manifolds with boundary and decomposition of manifolds (Roskilde, Denmark, 2003), Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005, 307–328 | MR | Zbl

[16] P. Baum, A. Connes, “Geometric ${K}$-theory for Lie groups and foliations”, Enseign. Math. (2), 46:1–2 (2000), 3–42 | MR | Zbl

[17] J.-L. Tu, “La conjecture de Baum–Connes pour les feuilletages moyennables”, $K$-Theory, 17:3 (1999), 215–264 | DOI | MR | Zbl

[18] B. A. Plamenevskii, V. N. Senichkin, “Predstavleniya $C^*$-algebr psevdodifferentsialnykh operatorov na kusochno gladkikh mnogoobraziyakh”, Algebra i analiz, 13:6 (2001), 124–174 ; B. A. Plamenevskii, V. N. Senichkin, “Representations of $C^*$-algebras of pseudodifferential operators on piecewise-smooth manifolds”, St. Petersburg Math. J., 13:6 (2002), 993–1032 | MR | Zbl

[19] D. Calvo, C.-I. Martin, B.-W. Schulze, “Symbolic structures on corner manifolds”, Microlocal analysis and asymptotic analysis (Kyoto, Japan, 2004), Keio Univ., Tokyo, 2005, 22–35

[20] G. Luke, “Pseudodifferential operators on Hilbert bundles”, J. Differential Equations, 12:3 (1972), 566–589 | DOI | MR | Zbl

[21] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, “Psevdodifferentsialnye operatory na stratifitsirovannykh mnogoobraziyakh. I, II”, Differents. uravneniya, 43:4 (2007), 519–532 | MR

[22] N. Higson, J. Roe, Analytic $K$-homology, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[23] M. Atiyah, V. Patodi, I. Singer, “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79:1 (1976), 71–99 | DOI | MR | Zbl

[24] A. Connes, N. Higson, “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Acad. Sci. Paris, Sér. I. Math., 311:2 (1990), 101–106 | MR | Zbl

[25] N. Higson, “On the $K$-theory proof of the index theorem”, Index theory and operator algebras (Boulder, CO, USA, 1991), Contemp. Math., 148, Amer. Math. Soc., Providence, RI, 1993, 67–86 | MR | Zbl

[26] V. M. Manuilov, “Ob asimptoticheskikh gomomorfizmakh v algebru Kalkina”, Funkts. analiz i ego prilozh., 35:2 (2001), 81–84 | MR | Zbl

[27] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[28] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, B.-V. Shultse, “Ob indekse ellipticheskikh operatorov na mnogoobraziyakh s rebrami”, Matem. sb., 196:9 (2005), 23–58 | MR

[29] V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, Elliptic Theory on Manifolds with Nonisolated Singularities. III. The Spectral Flow of Families of Conormal Symbols, Preprint No 2002/20, Univ. Potsdam, Institut für Mathematik, Potsdam, 2002 | MR

[30] R. Melrose, P. Piazza, “Analytic $K$-theory on manifolds with corners”, Adv. Math., 92:1 (1992), 1–26 | DOI | MR | Zbl

[31] P. Baum, R. G. Douglas, “Index theory, bordism, and {$K$}-homology”, Operator algebras and $K$-theory (San Francisco, 1981), Contemp. Math., 10, Amer. Math. Soc., Providence, RI, 1982, 1–31 | MR | Zbl

[32] J. Roe, “Coarse cohomology and index theory on complete Riemannian manifolds”, Mem. Amer. Math. Soc., 104:497 (1993), 1–90 | MR | Zbl

[33] B. Monthubert, “Groupoids of manifolds with corners and index theory”, Groupoids in analysis, geometry, and physics (Boulder, CO, USA, 1999), Contemp. Math., 282, Amer. Math. Soc., Providence, RI, 2001, 147–157 | MR | Zbl

[34] B. Blackadar, “$K$-theory for operator algebras”, Mathematical sciences research institute publications, Math. Sci. Res. Inst. Publ., 5, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[35] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. III. Psevdodifferentsialnye operatory, Mir, M., 1987 ; L. Hörmander, The analysis of linear partial differential operators. III. Pseudodifferential operators, Grundlehren Math. Wiss., 274, Springer, Berlin, 1985 | MR | MR | Zbl