Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_6_a4, author = {V. E. Nazaikinskii and A. Yu. Savin and B. Yu. Sternin}, title = {Homotopy classification of~elliptic~operators on stratified manifolds}, journal = {Izvestiya. Mathematics }, pages = {1167--1192}, publisher = {mathdoc}, volume = {71}, number = {6}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a4/} }
TY - JOUR AU - V. E. Nazaikinskii AU - A. Yu. Savin AU - B. Yu. Sternin TI - Homotopy classification of~elliptic~operators on stratified manifolds JO - Izvestiya. Mathematics PY - 2007 SP - 1167 EP - 1192 VL - 71 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a4/ LA - en ID - IM2_2007_71_6_a4 ER -
V. E. Nazaikinskii; A. Yu. Savin; B. Yu. Sternin. Homotopy classification of~elliptic~operators on stratified manifolds. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1167-1192. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a4/
[1] M. F. Atiyah, “Global theory of elliptic operators”, Functional analysis and related topics, Proc. Int. Conf. (Tokyo 1969), Univ. Tokyo Press, Tokyo, 1970, 21–30 | MR | Zbl
[2] G. G. Kasparov, “Obobschennyi indeks ellipticheskikh operatorov”, Funkts. analiz i ego prilozh., 7:3 (1973), 82–83 | MR | Zbl
[3] L. Brown, R. Douglas, P. Fillmore, “Extensions of $C^*$-algebras and $K$-homology”, Ann. of Math. (2), 105:2 (1977), 265–324 | DOI | MR | Zbl
[4] I. M. Singer, “Future extensions of index theory and elliptic operators”, Prospects in mathematics (Princeton, NJ, 1970), Ann. of Math. Studies, 70, Princeton Univ. Press, Princeton, NJ, 1971, 171–185 | MR | Zbl
[5] A. Savin, “Elliptic operators on singular manifolds and $K$-homology”, $K$-Theory, 34:1 (2005), 71–98 | DOI | MR | Zbl
[6] C. Debord, J.-M. Lescure, “$K$-duality for pseudomanifolds with isolated singularities”, J. Funct. Anal., 219:1 (2005), 109–133 | DOI | MR | Zbl
[7] J.-M. Lescure, Elliptic symbols, elliptic operators and Poincare duality on conical pseudomanifolds, arXiv: math.OA/0609328 | MR
[8] V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, On the homotopy classification of elliptic operators on manifolds with edges, Preprint No 2004/16, Univ. Potsdam, Inst. Math., Potsdam, 2004; arXiv: math.OA/0503694
[9] R. Melrose, F. Rochon, “Index in $K$-theory for families of fibred cusp operators”, $K$-Theory, 37:1–2 (2006), 25–104 ; arXiv: math.DG/0507590 | DOI | MR | Zbl
[10] B. A. Plamenevskii, V. N. Senichkin, “O klasse psevdodifferentsialnykh operatorov v $\mathbb{R}^m$ i na stratifitsirovannykh mnogoobraziyakh”, Matem. sb., 191:5 (2000), 109–142 | MR | Zbl
[11] V. Nistor, A. Weinstein, P. Xu, “Pseudodifferential operators on differential groupoids”, Pacific J. Math., 189:1 (1999), 117–152 | MR | Zbl
[12] R. Lauter, B. Monthubert, V. Nistor, “Pseudodifferential analysis on continuous family groupoids”, Doc. Math., 5 (2000), 625–655 | MR | Zbl
[13] R. Melrose, “Pseudodifferential operators, corners, and singular limits”, Proceedings of the international congress of mathematicians (Kyoto, Japan, 1990), Math. Soc. Japan, Tokyo; Springer-Verlag, Tokyo, 1991, 217–234 | MR | Zbl
[14] R. Lauter, V. Nistor, “Analysis of geometric operators on open manifolds: a groupoid approach”, Quantization of singular symplectic quotients (Oberwolfach, Germany, 1999), Progr. Math., 198, Birkhäuser, Basel, 2001, 181–229 | MR | Zbl
[15] V. Nistor, “Pseudodifferential operators on non-compact manifolds and analysis on polyhedral domains”, Spectral geometry of manifolds with boundary and decomposition of manifolds (Roskilde, Denmark, 2003), Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005, 307–328 | MR | Zbl
[16] P. Baum, A. Connes, “Geometric ${K}$-theory for Lie groups and foliations”, Enseign. Math. (2), 46:1–2 (2000), 3–42 | MR | Zbl
[17] J.-L. Tu, “La conjecture de Baum–Connes pour les feuilletages moyennables”, $K$-Theory, 17:3 (1999), 215–264 | DOI | MR | Zbl
[18] B. A. Plamenevskii, V. N. Senichkin, “Predstavleniya $C^*$-algebr psevdodifferentsialnykh operatorov na kusochno gladkikh mnogoobraziyakh”, Algebra i analiz, 13:6 (2001), 124–174 ; B. A. Plamenevskii, V. N. Senichkin, “Representations of $C^*$-algebras of pseudodifferential operators on piecewise-smooth manifolds”, St. Petersburg Math. J., 13:6 (2002), 993–1032 | MR | Zbl
[19] D. Calvo, C.-I. Martin, B.-W. Schulze, “Symbolic structures on corner manifolds”, Microlocal analysis and asymptotic analysis (Kyoto, Japan, 2004), Keio Univ., Tokyo, 2005, 22–35
[20] G. Luke, “Pseudodifferential operators on Hilbert bundles”, J. Differential Equations, 12:3 (1972), 566–589 | DOI | MR | Zbl
[21] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, “Psevdodifferentsialnye operatory na stratifitsirovannykh mnogoobraziyakh. I, II”, Differents. uravneniya, 43:4 (2007), 519–532 | MR
[22] N. Higson, J. Roe, Analytic $K$-homology, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[23] M. Atiyah, V. Patodi, I. Singer, “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79:1 (1976), 71–99 | DOI | MR | Zbl
[24] A. Connes, N. Higson, “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Acad. Sci. Paris, Sér. I. Math., 311:2 (1990), 101–106 | MR | Zbl
[25] N. Higson, “On the $K$-theory proof of the index theorem”, Index theory and operator algebras (Boulder, CO, USA, 1991), Contemp. Math., 148, Amer. Math. Soc., Providence, RI, 1993, 67–86 | MR | Zbl
[26] V. M. Manuilov, “Ob asimptoticheskikh gomomorfizmakh v algebru Kalkina”, Funkts. analiz i ego prilozh., 35:2 (2001), 81–84 | MR | Zbl
[27] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[28] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, B.-V. Shultse, “Ob indekse ellipticheskikh operatorov na mnogoobraziyakh s rebrami”, Matem. sb., 196:9 (2005), 23–58 | MR
[29] V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, Elliptic Theory on Manifolds with Nonisolated Singularities. III. The Spectral Flow of Families of Conormal Symbols, Preprint No 2002/20, Univ. Potsdam, Institut für Mathematik, Potsdam, 2002 | MR
[30] R. Melrose, P. Piazza, “Analytic $K$-theory on manifolds with corners”, Adv. Math., 92:1 (1992), 1–26 | DOI | MR | Zbl
[31] P. Baum, R. G. Douglas, “Index theory, bordism, and {$K$}-homology”, Operator algebras and $K$-theory (San Francisco, 1981), Contemp. Math., 10, Amer. Math. Soc., Providence, RI, 1982, 1–31 | MR | Zbl
[32] J. Roe, “Coarse cohomology and index theory on complete Riemannian manifolds”, Mem. Amer. Math. Soc., 104:497 (1993), 1–90 | MR | Zbl
[33] B. Monthubert, “Groupoids of manifolds with corners and index theory”, Groupoids in analysis, geometry, and physics (Boulder, CO, USA, 1999), Contemp. Math., 282, Amer. Math. Soc., Providence, RI, 2001, 147–157 | MR | Zbl
[34] B. Blackadar, “$K$-theory for operator algebras”, Mathematical sciences research institute publications, Math. Sci. Res. Inst. Publ., 5, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[35] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. III. Psevdodifferentsialnye operatory, Mir, M., 1987 ; L. Hörmander, The analysis of linear partial differential operators. III. Pseudodifferential operators, Grundlehren Math. Wiss., 274, Springer, Berlin, 1985 | MR | MR | Zbl