Lipschitz continuous parametrizations of set-valued maps with
Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1123-1143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the investigations started in [1]–[4], where weakly convex sets and set-valued maps with weakly convex images were studied. Sufficient conditions are found for the existence of a Lipschitz parametrization for a set-valued map with solidly smooth (generally, non-convex) images. It is also shown that the set-valued $\varepsilon$-projection on a weakly convex set and the unit outer normal vector to a solidly smooth set satisfy, as set functions, the Lipschitz condition and the Hölder condition with exponent $1/2$, respectively, relative to the Hausdorff metric.
@article{IM2_2007_71_6_a2,
     author = {G. E. Ivanov and M. V. Balashov},
     title = {Lipschitz continuous parametrizations of set-valued maps with},
     journal = {Izvestiya. Mathematics },
     pages = {1123--1143},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a2/}
}
TY  - JOUR
AU  - G. E. Ivanov
AU  - M. V. Balashov
TI  - Lipschitz continuous parametrizations of set-valued maps with
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1123
EP  - 1143
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a2/
LA  - en
ID  - IM2_2007_71_6_a2
ER  - 
%0 Journal Article
%A G. E. Ivanov
%A M. V. Balashov
%T Lipschitz continuous parametrizations of set-valued maps with
%J Izvestiya. Mathematics 
%D 2007
%P 1123-1143
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a2/
%G en
%F IM2_2007_71_6_a2
G. E. Ivanov; M. V. Balashov. Lipschitz continuous parametrizations of set-valued maps with. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1123-1143. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a2/

[1] J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl

[2] G. E. Ivanov, “Mnozhestva, slabo vypuklye po Vialyu i po Efimovu–Stechkinu”, Izv. RAN. Ser. matem., 69:6 (2005), 35–60 | MR | Zbl

[3] G. E. Ivanov, “Slabo vypuklye mnozhestva i ikh svoistva”, Matem. zametki, 79:1 (2006), 60–86 | MR | Zbl

[4] M. V. Balashov, G. E. Ivanov, “Svoistva metricheskoi proektsii na mnozhestvo, slabo vypukloe po Vialyu, i parametrizatsiya mnogoznachnykh otobrazhenii so slabo vypuklymi znacheniyami”, Matem. zametki, 80:4 (2006), 483–489 | MR | Zbl

[5] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 ; F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1983 | MR | Zbl | MR | Zbl

[6] J.-P. Aubin, A. Cellina, Differential inclusions, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984 | MR | Zbl

[7] J.-P. Aubin, H. Frankowska, Set-valued analysis, Systems Control Found. Appl., 2, Birkhäuser, Boston, 1990 | MR | Zbl

[8] A. D. Ioffe, “Representation of set-valued mappings. II. Application to differential inclusions”, SIAM J. Control Optim., 21:4 (1983), 641–651 | DOI | MR | Zbl

[9] A. Le Donne, M. V. Marchi, “Representation of Lipschitz compact-convex valued mappings”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68:4 (1980), 278–280 | MR | Zbl

[10] A. Ornelas, “Parametrization of Carathéodory multifunctions”, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33–44 | MR | Zbl

[11] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[12] M. D. Kirszbraun, “Über die zusammenziehende und Lipschitzsche Trasformationen”, Fundam. Math., 22 (1934), 77–108 | Zbl

[13] F. A. Valentine, “A Lipschitz condition preserving extension for a vector function”, Amer. J. Math., 67:1 (1945), 83–93 | DOI | MR | Zbl