Bessel harmonic analysis and approximation of functions on the half-line
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 1001-1048.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study problems of approximation of functions on $[0, +\infty)$ in the metric of $L_p$ with power weight using generalized Bessel shifts. We prove analogues of direct Jackson theorems for the modulus of smoothness of arbitrary order defined in terms of generalized Bessel shifts. We establish the equivalence of the modulus of smoothness and the $K$-functional. We define function spaces of Nikol'skii–Besov type and describe them in terms of best approximations. As a tool for approximation, we use a certain class of entire functions of exponential type. In this class, we prove analogues of Bernstein's inequality and others for the Bessel differential operator and its fractional powers. The main tool we use to solve these problems is Bessel harmonic analysis.
@article{IM2_2007_71_5_a4,
     author = {S. S. Platonov},
     title = {Bessel harmonic analysis and approximation of functions on the half-line},
     journal = {Izvestiya. Mathematics },
     pages = {1001--1048},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a4/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Bessel harmonic analysis and approximation of functions on the half-line
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1001
EP  - 1048
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a4/
LA  - en
ID  - IM2_2007_71_5_a4
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Bessel harmonic analysis and approximation of functions on the half-line
%J Izvestiya. Mathematics 
%D 2007
%P 1001-1048
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a4/
%G en
%F IM2_2007_71_5_a4
S. S. Platonov. Bessel harmonic analysis and approximation of functions on the half-line. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 1001-1048. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a4/

[1] P. L. Butzer, H. Behrens, Semi-groups of operators and approximation, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[2] A. P. Terekhin, “Ogranichennaya gruppa operatorov i nailuchshee priblizhenie”, Differentsialnye uravneniya i vychislitelnaya matematika, vyp. 2, Izd-vo Saratovskogo gos. un-ta, Saratov, 1975, 3–28 | MR | Zbl

[3] S. G. Krein, I. Z. Pesenson, Prostranstva gladkikh elementov, porozhdennykh predstavleniem gruppy Li. Interpolyatsiya i priblizheniya, Izd-vo Voronezhskogo un-ta, Voronezh, 1990 | MR | Zbl

[4] V. M. Tikhomirov, “Garmoniki i splainy kak optimalnye sredstva priblizheniya i vosstanovleniya”, UMN, 50:2 (1995), 125–174 | MR | Zbl

[5] B. M. Levitan, Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[6] J. Löfström, J. Peetre, “Approximation theorems connected with generalized translations”, Math. Ann., 181:4 (1969), 255–268 | DOI | MR | Zbl

[7] M. K. Potapov, “O primenenii operatora obobschennogo sdviga v teorii priblizhenii”, Vestn. Mosk. un-ta. Ser. 1 matem., mekh., 1998, no. 3, 38–48 | MR | Zbl

[8] Z. Ditzian, V. Totik, Moduli of smoothness, Springer Ser. Comput. Math., 9, Springer, New York, 1987 | MR | Zbl

[9] B. M. Levitan, “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2 (1951), 102–143 | MR | Zbl

[10] I. A. Kipriyanov, Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR | Zbl

[11] K. Trimèche, Generalized harmonic analysis and wavelet packets, Gordon and Breach, Amsterdam, 2001 | MR | Zbl

[12] Ya. I. Zhitomirskii, “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnymi operatorami tipa Besselya”, Matem. sb., 36:2 (1955), 299–310

[13] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 ; I. S. Gradshtein, I. M. Ryzhik, Tables of integrals, series, and products, Academic Press, San Diego, CA, 2000 | MR | Zbl | MR | Zbl

[14] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 ; S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer, New York–Heidelberg, 1975 | MR | Zbl | MR | Zbl

[15] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 ; R. M. Trigub, “Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus”, Math. USSR-Izv., 17:3 (1981), 567–593 | MR | Zbl | DOI | Zbl

[16] S. M. Nikolskii, P. I. Lizorkin, “Klassy funktsii, postroennykh na osnove usrednenii”, Sib. matem. zhurn., 29:5 (1988), 181–190 | MR | Zbl

[17] P. I. Lizorkin, “Klassy funktsii, postroennye na osnove usrednenii po sferam”, Tr. MIAN, 192, 1990, 122–139 ; P. I. Lizorkin, “Classes of functions constructed on the basis of averages over spheres”, Proc. Steklov Inst. Math., 192 (1992), 131–149 | MR | Zbl

[18] A. S. Dzhafarov, “O sfericheskikh analogakh klassicheskikh teorem Dzh. Dzheksona i S. N. Bernshteina”, Dokl. AN SSSR, 203:2 (1972), 278–281 | Zbl

[19] S. M. Nikolskii, P. I. Lizorkin, “Approksimatsiya funktsii na sfere”, Izv. AN SSSR. Ser. matem., 51:3 (1987), 635–651 ; S. M. Nikol'skii, P. I. Lizorkin, “Approximation of functions on the sphere”, Math. USSR-Izv., 30:3 (1988), 599–614 | MR | Zbl | DOI

[20] S. S. Platonov, “Priblizheniya na kompaktnykh simmetricheskikh prostranstvakh ranga 1”, Matem. sb., 188:5 (1997), 113–130 | MR | Zbl

[21] S. S. Platonov, “Priblizhenie funktsii v metrike $L_2$ na nekompaktnykh simmetricheskikh prostranstvakh ranga 1”, Algebra i analiz, 11:1 (1999), 244–270 ; S. S. Platonov, “Approximation of functions in the $L_2$-metric on noncompact symmetric spaces of rank 1”, St. Petersburg Math. J., 11:1 (2000), 183–201 | MR | Zbl

[22] G. A. Kalyabin, “O modulyakh gladkosti funktsii, zadannykh na sfere”, Dokl. AN SSSR, 294:5 (1987), 1051–1054 | MR | Zbl

[23] Kh. P. Rustamov, “O priblizhenii funktsii na sfere”, Izv. RAN. Ser. matem., 57:5 (1993), 127–148 ; Kh. P. Rustamov, “On approximation of functions on the sphere”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 311–329 | MR | Zbl | DOI

[24] S. S. Platonov, “Analogi neravenstv Bernshteina i Nikolskogo dlya odnogo klassa tselykh funktsii eksponentsialnogo tipa”, Dokl. RAN, 398:2 (2004), 168–171 | MR

[25] K. Trimèche, “Transmutation operators and mean-periodic functions associated with differential operators”, Math. Rep., 4:1 (1988), 1–282 | MR | Zbl

[26] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | Zbl

[27] P. Civin, “Inequalities for trigonometric integrals”, Duke Math. J., 8:4 (1941), 656–665 | DOI | MR | Zbl

[28] N. I. Kipriyanova, “Interpolyatsionnaya formula tipa formuly P. Saivina, svyazannaya s obobschennym sdvigom”, Pontryaginskie chteniya, VI, Izd-vo Voronezhskogo un-ta, Voronezh, 1994, 42

[29] A. I. Kamzolov, “Ob interpolyatsionnoi formule Rissa i neravenstve Bernshteina dlya funktsii na odnorodnykh prostranstvakh”, Matem. zametki, 15:6 (1974), 967–978 | MR | Zbl

[30] L. N. Lyakhov, “Prostranstva $B$-potentsialov Rissa”, Dokl. RAN, 334:3 (1994), 278–280 | MR | Zbl

[31] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 ; E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970 | MR | Zbl | MR | Zbl

[32] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii. T. 2. Preobrazovaniya Besselya. Integraly ot spetsialnykh funktsii, Nauka, Fizmatlit, M., 1970 ; A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, Vol. II, McGraw-Hill, New York–Toronto–London, 1954 | Zbl | MR | Zbl

[33] Yuan Xu, “Weighted approximation of functions on the unit sphere”, Constr. Approx., 21:1 (2004), 1–28 | MR | Zbl

[34] S. B. Stechkin, “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl

[35] S. M. Nikolskii, “Obobschenie odnogo iz neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1507–1510 | MR | Zbl

[36] R. P. Boas, “Quelques généralisations d'un théorème de S. Bernstein sur la dérivée d'un polynôme trigonométrique”, C. R. Acad. Sci. Paris, 227 (1948), 618–619 | MR | Zbl

[37] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960 ; A. F. Timan, Theory of approximation of functions of a real variable, Internat. Ser. Monogr. Pure Appl. Math., 34, Pergamon, Oxford, 1963 | MR | MR | Zbl

[38] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 ; A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Vol. 2, McGraw-Hill, New York–Toronto–London, 1953 | MR | Zbl | MR | Zbl