The topological classification of Fano surfaces of real three-dimensional cubics
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 863-894

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider surfaces whose points are the lines on the real three-dimensional varieties of degree 3. These surfaces are called Fano surfaces. This paper deals with finding the topological types, that is, a topological classification, of real Fano surfaces. Moreover, we prove that the equivariant topological type of the corresponding complex Fano surface with the involution of complex conjugation determines the rigid isotopy class of the corresponding real three-dimensional cubic.
@article{IM2_2007_71_5_a0,
     author = {V. A. Krasnov},
     title = {The topological classification of {Fano} surfaces of real three-dimensional cubics},
     journal = {Izvestiya. Mathematics },
     pages = {863--894},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The topological classification of Fano surfaces of real three-dimensional cubics
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 863
EP  - 894
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/
LA  - en
ID  - IM2_2007_71_5_a0
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The topological classification of Fano surfaces of real three-dimensional cubics
%J Izvestiya. Mathematics 
%D 2007
%P 863-894
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/
%G en
%F IM2_2007_71_5_a0
V. A. Krasnov. The topological classification of Fano surfaces of real three-dimensional cubics. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 863-894. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/