The topological classification of Fano surfaces of real three-dimensional cubics
Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 863-894.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider surfaces whose points are the lines on the real three-dimensional varieties of degree 3. These surfaces are called Fano surfaces. This paper deals with finding the topological types, that is, a topological classification, of real Fano surfaces. Moreover, we prove that the equivariant topological type of the corresponding complex Fano surface with the involution of complex conjugation determines the rigid isotopy class of the corresponding real three-dimensional cubic.
@article{IM2_2007_71_5_a0,
     author = {V. A. Krasnov},
     title = {The topological classification of {Fano} surfaces of real three-dimensional cubics},
     journal = {Izvestiya. Mathematics },
     pages = {863--894},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The topological classification of Fano surfaces of real three-dimensional cubics
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 863
EP  - 894
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/
LA  - en
ID  - IM2_2007_71_5_a0
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The topological classification of Fano surfaces of real three-dimensional cubics
%J Izvestiya. Mathematics 
%D 2007
%P 863-894
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/
%G en
%F IM2_2007_71_5_a0
V. A. Krasnov. The topological classification of Fano surfaces of real three-dimensional cubics. Izvestiya. Mathematics , Tome 71 (2007) no. 5, pp. 863-894. http://geodesic.mathdoc.fr/item/IM2_2007_71_5_a0/

[1] V. A. Krasnov, “O poverkhnosti Fano veschestvennoi trekhmernoi $M$-kubiki”, Matem. zametki, 78:5 (2005), 710–717 | MR | Zbl

[2] V. A. Krasnov, “Topologicheskii tip poverkhnosti Fano veschestvennoi trekhmernoi $M$-kubiki”, Izv. RAN. Ser. matem., 69:6 (2005), 61–94 | MR | Zbl

[3] V. A. Krasnov, “Zhestkaya izotopicheskaya klassifikatsiya veschestvennykh trekhmernykh kubik”, Izv. RAN. Ser. matem., 70:4 (2006), 91–134 | MR | Zbl

[4] V. A. Rokhlin, “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, UMN, 33:5 (1978), 77–89 | MR | Zbl

[5] A. B. Altman, S. I. Kleiman, “Foundations of the theory of Fano schemes”, Compositio Math., 34:1 (1977), 3–47 | MR | Zbl

[6] V. A. Krasnov, “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 ; V. A. Krasnov, “Harnack–Thom inequalities for mappings of real algebraic varieties”, Izv. Math., 22:2 (1984), 247–275 | MR | Zbl | DOI

[7] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961 ; A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tohoku Math. J. (2), 9 (1957), 119–221 | Zbl | MR | Zbl

[8] C. H. Clemens, P. A. Griffits, “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2), 95:2 (1972), 281–356 | DOI | MR | Zbl

[9] A. I. Degtyarev, V. I. Zvonilov, “Zhestkaya izotopicheskaya klassifikatsiya veschestvennykh algebraicheskikh krivykh bistepeni $(3,3)$ na kvadrikakh”, Matem. zametki, 66:6 (1999), 810–815 ; A. I. Degtyarev, V. I. Zvonilov, “Rigid isotopy classification of real algebraic curves of bidegree $(3,3)$ on quadrics”, Math. Notes, 66:5–6 (2000), 670–674 | MR | Zbl

[10] Dzh. Milnor, Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 ; J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Stud., 61, Princeton Univ. Press, Princeton; Univ. Tokyo Press, Tokyo, 1968 | MR | Zbl | MR | Zbl

[11] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotika integralov, Nauka, M., 1984 ; V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals, Monogr. Math., 83, Birkhäuser, Boston, 1988 | MR | Zbl | MR | Zbl

[12] V. A. Krasnov, “Veschestvennye algebraicheskie $GM$-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[13] M. F. Atiyah, “$K$-theory and reality”, Quart. J. Math. Oxford Ser. (2), 17:1 (1966), 165–193 | DOI | MR | Zbl