Elliptic structures on weighted three-dimensional Fano hypersurfaces
Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 765-862.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify birational transformations into elliptic fibrations of a general quasi-smooth hypersurface in $\mathbb P(1,a_1,a_2,a_3,a_4)$ of degree $\sum_{i=1}^4a_i$ that has terminal singularities.
@article{IM2_2007_71_4_a4,
     author = {I. A. Cheltsov},
     title = {Elliptic structures on weighted three-dimensional {Fano} hypersurfaces},
     journal = {Izvestiya. Mathematics },
     pages = {765--862},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a4/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Elliptic structures on weighted three-dimensional Fano hypersurfaces
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 765
EP  - 862
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a4/
LA  - en
ID  - IM2_2007_71_4_a4
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Elliptic structures on weighted three-dimensional Fano hypersurfaces
%J Izvestiya. Mathematics 
%D 2007
%P 765-862
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a4/
%G en
%F IM2_2007_71_4_a4
I. A. Cheltsov. Elliptic structures on weighted three-dimensional Fano hypersurfaces. Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 765-862. http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a4/

[1] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl

[2] A. Corti, A. Pukhlikov, M. Reid, “Fano 3-fold hypersurfaces”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 175–258 | MR | Zbl

[3] I. A. Cheltsov, “Biratsionalno zhestkie mnogoobraziya Fano”, UMN, 60:5 (2005), 71–160 | MR

[4] I. Cheltsov, J. Park, “Weighted Fano threefold hypersurfaces”, J. Reine Angew. Math., 600 (2006), 81–116 | MR | Zbl

[5] I. Cheltsov, “Log models of birationally rigid varieties”, J. Math. Sci. (New York), 102:2 (2000), 3843–3875 | DOI | MR | Zbl

[6] I. A. Cheltsov, “Antikanonicheskie modeli trekhmernykh mnogoobrazii Fano stepeni chetyre”, Matem. sb., 194:4 (2003), 147–172 | MR | Zbl

[7] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[8] Y. Kawamata, “Divisorial contractions to $3$-dimensional terminal quotient singularities”, Higher-dimensional complex varieties (Trento, Italy, 1994), de Gruyter, Berlin, 1996, 241–246 | MR | Zbl

[9] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | MR | Zbl

[10] D. Ryder, The curve exclusion theorem for elliptic and $K3$ fibrations birational to Fano $3$-fold hypersurfaces, arxiv:math.AG/0606177

[11] J. Kollár, “Singularities of pairs”, Algebraic geometry (Santa Cruz, CA, USA, 1995), Proc. Sympos. Pure Math., 62, no. 1, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl

[12] V. V. Shokurov, “Trekhmernye logperestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–203 ; V. V. Shokurov, “3-fold log flips”, Izv. Math., 40:1 (1993), 95–202 | MR | Zbl | DOI