Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_4_a3, author = {A. Yu. Khrennikov and P. Svensson}, title = {Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers}, journal = {Izvestiya. Mathematics }, pages = {753--764}, publisher = {mathdoc}, volume = {71}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a3/} }
TY - JOUR AU - A. Yu. Khrennikov AU - P. Svensson TI - Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers JO - Izvestiya. Mathematics PY - 2007 SP - 753 EP - 764 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a3/ LA - en ID - IM2_2007_71_4_a3 ER -
A. Yu. Khrennikov; P. Svensson. Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers. Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 753-764. http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a3/
[1] V. S. Anashin, “Ravnomerno raspredelennye posledovatelnosti $p$-adicheskikh tselykh chisel”, Matem. zametki, 55:2 (1994), 3–46 | MR | Zbl
[2] V. S. Anashin, “Ravnomerno raspredelennye posledovatelnosti $p$-adicheskikh tselykh chisel. II”, Diskret. matematika, 14:4 (2002), 3–64 | MR | Zbl
[3] D. K. Arrowsmith, F. Vivaldi, “Geometry of $p$-adic Siegel discs”, Phys. D, 71:1–2 (1994), 222–236 | DOI | MR | Zbl
[4] R. Benedetto, “$p$-adic dynamics and Sullivan's no wandering domains theorem”, Compositio Math., 122:3 (2000), 281–298 | DOI | MR | Zbl
[5] R. Benedetto, “Hyperbolic maps in $p$-adic dynamics”, Ergodic Theory Dynam. Systems, 21:1 (2001), 1–11 | DOI | MR | Zbl
[6] A. Yu. Khrennikov, Non-archimedean analysis: quantum paradoxes, dynamical systems and biological models, Math. Appl., 427, Kluwer, Dordrecht, 1997 | MR | Zbl
[7] A. Yu. Khrennikov, “$p$-adic discrete dynamical systems and their applications in physics and cognitive sciences”, Russ. J. Math. Phys., 11:1 (2004), 45–70 | MR | Zbl
[8] A. Yu. Khrennikov, M. Nilsson, “On the number of cycles of $p$-adic dynamical systems”, J. Number Theory, 90:2 (2001), 255–264 | DOI | MR | Zbl
[9] A. Yu. Khrennikov, M. Nilsson, “Behaviour of Hensel perturbations of $p$-adic monomial dynamical systems”, Anal. Math., 29:2 (2003), 107–133 | DOI | MR | Zbl
[10] K.-O. Lindahl, “On Siegel's linearization theorem for fields of prime characteristic”, Nonlinearity, 17:3 (2004), 745–763 | DOI | MR | Zbl
[11] J. Lubin, “Nonarchimedean dynamical systems”, Compositio Math., 94:3 (1994), 321–346 | MR | Zbl
[12] F. Vivaldi, “Dynamics over irreducible polynomials”, Nonlinearity, 5:4 (1992), 941–960 | DOI | MR | Zbl
[13] P.-A. Svensson, “Vozmuschennye dinamicheskie sistemy v $p$-adicheskikh polyakh”, Tr. MIAN, 245 (2004), 264–272 | MR | Zbl
[14] P.-A. Svensson, “Dinamicheskie sistemy v nerazvetvlennykh ili vpolne razvetvlennykh rasshireniyakh $\mathfrak p$-adicheskogo polya”, Izv. RAN. Ser. matem., 69:6 (2005), 211–218 | MR | Zbl
[15] H. Hasse, Number theory, Classics Math., Springer-Verlag, Berlin, 2002 | MR | Zbl
[16] S. Lang, Algebraic number theory, Grad. Texts in Math., 110, Springer-Verlag, New York, 1986 | MR | Zbl
[17] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Ph. D. thesis, Univ. Paris-Sud, Centre d'Orsay, 2000
[18] P.-A. Svensson, “Cubic extensions of the $3$-adic number field”, Comment. Math. Univ. St. Pauli, 51:1 (2002), 53–62 | MR | Zbl
[19] R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl