Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers
Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 753-764.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dynamical systems of the form $h(x)=x+g(x)$, where $g(x)$ is a monic irreducible polynomial with coefficients in the ring of integers of a $\mathfrak p$-adic field $K$. We also study 2-periodic points of some simple polynomials of this form in the case when $K=\mathbb Q_p$.
@article{IM2_2007_71_4_a3,
     author = {A. Yu. Khrennikov and P. Svensson},
     title = {Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers},
     journal = {Izvestiya. Mathematics },
     pages = {753--764},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
AU  - P. Svensson
TI  - Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 753
EP  - 764
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a3/
LA  - en
ID  - IM2_2007_71_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%A P. Svensson
%T Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers
%J Izvestiya. Mathematics 
%D 2007
%P 753-764
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a3/
%G en
%F IM2_2007_71_4_a3
A. Yu. Khrennikov; P. Svensson. Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers. Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 753-764. http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a3/

[1] V. S. Anashin, “Ravnomerno raspredelennye posledovatelnosti $p$-adicheskikh tselykh chisel”, Matem. zametki, 55:2 (1994), 3–46 | MR | Zbl

[2] V. S. Anashin, “Ravnomerno raspredelennye posledovatelnosti $p$-adicheskikh tselykh chisel. II”, Diskret. matematika, 14:4 (2002), 3–64 | MR | Zbl

[3] D. K. Arrowsmith, F. Vivaldi, “Geometry of $p$-adic Siegel discs”, Phys. D, 71:1–2 (1994), 222–236 | DOI | MR | Zbl

[4] R. Benedetto, “$p$-adic dynamics and Sullivan's no wandering domains theorem”, Compositio Math., 122:3 (2000), 281–298 | DOI | MR | Zbl

[5] R. Benedetto, “Hyperbolic maps in $p$-adic dynamics”, Ergodic Theory Dynam. Systems, 21:1 (2001), 1–11 | DOI | MR | Zbl

[6] A. Yu. Khrennikov, Non-archimedean analysis: quantum paradoxes, dynamical systems and biological models, Math. Appl., 427, Kluwer, Dordrecht, 1997 | MR | Zbl

[7] A. Yu. Khrennikov, “$p$-adic discrete dynamical systems and their applications in physics and cognitive sciences”, Russ. J. Math. Phys., 11:1 (2004), 45–70 | MR | Zbl

[8] A. Yu. Khrennikov, M. Nilsson, “On the number of cycles of $p$-adic dynamical systems”, J. Number Theory, 90:2 (2001), 255–264 | DOI | MR | Zbl

[9] A. Yu. Khrennikov, M. Nilsson, “Behaviour of Hensel perturbations of $p$-adic monomial dynamical systems”, Anal. Math., 29:2 (2003), 107–133 | DOI | MR | Zbl

[10] K.-O. Lindahl, “On Siegel's linearization theorem for fields of prime characteristic”, Nonlinearity, 17:3 (2004), 745–763 | DOI | MR | Zbl

[11] J. Lubin, “Nonarchimedean dynamical systems”, Compositio Math., 94:3 (1994), 321–346 | MR | Zbl

[12] F. Vivaldi, “Dynamics over irreducible polynomials”, Nonlinearity, 5:4 (1992), 941–960 | DOI | MR | Zbl

[13] P.-A. Svensson, “Vozmuschennye dinamicheskie sistemy v $p$-adicheskikh polyakh”, Tr. MIAN, 245 (2004), 264–272 | MR | Zbl

[14] P.-A. Svensson, “Dinamicheskie sistemy v nerazvetvlennykh ili vpolne razvetvlennykh rasshireniyakh $\mathfrak p$-adicheskogo polya”, Izv. RAN. Ser. matem., 69:6 (2005), 211–218 | MR | Zbl

[15] H. Hasse, Number theory, Classics Math., Springer-Verlag, Berlin, 2002 | MR | Zbl

[16] S. Lang, Algebraic number theory, Grad. Texts in Math., 110, Springer-Verlag, New York, 1986 | MR | Zbl

[17] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Ph. D. thesis, Univ. Paris-Sud, Centre d'Orsay, 2000

[18] P.-A. Svensson, “Cubic extensions of the $3$-adic number field”, Comment. Math. Univ. St. Pauli, 51:1 (2002), 53–62 | MR | Zbl

[19] R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl