Occupation times and exact asymptotics of small deviations of Bessel processes for
Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 721-752.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on exact asymptotics of the distributions of integral functionals of the occupation time of Bessel processes. Using these results, we obtain exact asymptotics of small deviations for Bessel processes in the $L^p$-norm. We use Laplace's method for the occupation times of Markov processes with continuous time. Computations are carried out for $p=2$ and $p=1$. We also solve extremal problems for the action functional.
@article{IM2_2007_71_4_a2,
     author = {V. R. Fatalov},
     title = {Occupation times and exact asymptotics of small deviations of {Bessel} processes for},
     journal = {Izvestiya. Mathematics },
     pages = {721--752},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Occupation times and exact asymptotics of small deviations of Bessel processes for
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 721
EP  - 752
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/
LA  - en
ID  - IM2_2007_71_4_a2
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Occupation times and exact asymptotics of small deviations of Bessel processes for
%J Izvestiya. Mathematics 
%D 2007
%P 721-752
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/
%G en
%F IM2_2007_71_4_a2
V. R. Fatalov. Occupation times and exact asymptotics of small deviations of Bessel processes for. Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 721-752. http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/

[1] M. A. Lifshits, Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl

[2] V. R. Fatalov, “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, UMN, 58:4 (2003), 89–134 | MR | Zbl

[3] W. V. Li, “Small ball probabilities for Gaussian Markov processes under the $L^p$-norm”, Stochastic Process. Appl., 92:1 (2001), 87–102 | DOI | MR | Zbl

[4] M. A. Lifshits, W. Linde, “Approximation and entropy numbers of Volterra operators with applications to Brownian motion”, Mem. Amer. Math. Soc., 157:745 (2002), 1–87 | MR | Zbl

[5] V. R. Fatalov, “Metod Laplasa dlya malykh uklonenii gaussovskikh protsessov tipa vinerovskogo”, Matem. sb., 196:4 (2005), 135–160 | MR | Zbl

[6] W. V. Li, Q.-M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic processes: theory and methods, Handbook of Statist., 19, eds. D. N. Shanbhag et al., North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl

[7] V. I. Piterbarg, V. R. Fatalov, “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6 (1995), 57–150 | MR | Zbl

[8] M. D. Donsker, S. R. S. Varadhan, “On laws of the iterated logarithm for local times”, Commun. Pure Appl. Math., 30:6 (1977), 707–753 | DOI | MR | Zbl

[9] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time, I, II, III, IV”, Commun. Pure Appl. Math., 28:1 (1975), 1–47 ; 28:2 (1975), 279–301 ; 29:4 (1976), 389–461 ; 36:2 (1983), 183–212 | MR | Zbl | DOI | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[10] S. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl

[11] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000 ; A. N. Borodin, P. Salminen, Handbook of Brownian motion: facts and formulae, Probab. Appl., Birkhäuser, Basel, 1996 | Zbl | MR | Zbl

[12] N. Ikeda, S. Vatanabe, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 ; N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland, Amsterdam–New York, 1981 | MR | Zbl | MR | Zbl

[13] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl

[14] K. Ito, G. Makkin, Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968 ; K. Itô, H. P. McKean, Diffusion processes and their sample paths, Springer-Verlag, Berlin–Heidelberg–New York, 1965 | Zbl | MR | Zbl

[15] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl

[16] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 ; M. Abramowitz, I. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Wiley, New York, 1972 | MR | Zbl | MR | Zbl

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 2: Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 ; A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based on notes left by H. Bateman, McGraw-Hill, New York–Toronto–London, 1953 | MR | Zbl | MR | Zbl

[18] F. Olver, Asimptotiki i spetsialnye funktsii, Nauka, M., 1990 ; F. W. J. Olver, Asymptotics and special functions, Academic Press, New York–London, 1974 | MR | Zbl | MR | Zbl

[19] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1961 ; E. Kamke, Differentialgleichungen, Lösunsmethoden und Lösungen, Academie-Verlag, Leipzig, 1959 | MR | Zbl | MR | Zbl

[20] A. N. Borodin, I. A. Ibragimov, Predelnye teoremy dlya funktsionalov ot sluchainykh bluzhdanii, Tr. MIAN, 195, Nauka, SPb., 1994 ; A. N. Borodin, I. A. Ibragimov, Limit theorems for functionals of random walks, Proc. Steklov Inst. Math., 195, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl | Zbl

[21] L. M. Wu, “Grandes déviations pour les processus de Markov essentiellement irréductibles. I: Temps discret; II: Temps continu; III: Quelques applications”, C. R. Acad. Sci. Paris. Sér. I, Math., 312:8 (1991), 609–614 ; 314:12 (1992), 941–946 ; 316:8 (1993), 853–858 | MR | Zbl | MR | Zbl | MR | Zbl

[22] M. Fukushima, M. Takeda, “A transformation of a symmetric Markov process and the Donsker–Varadhan theory”, Osaka J. Math., 21:2 (1984), 311–326 | MR | Zbl

[23] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 ; V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987 | MR | Zbl | MR | Zbl

[24] V. R. Fatalov, “Vremena prebyvaniya i tochnye asimptotiki raspredelenii $L^p$-funktsionalov ot protsessov Ornshteina–Ulenbeka, $p>0$”, Teoriya veroyatn. i ee primen. (to appear)

[25] V. R. Fatalov, “The Laplace method for computing exact asymptotics of distributions of integral statistics”, Math. Methods Statist., 8:4 (1999), 510–535 | MR | Zbl

[26] K. Mattes, I. Kerstan, I. Mekke, Bezgranichno delimye tochechnye protsessy, Nauka, M., 1982 ; K. Matthes, J. Kerstan, J. Mecke, Infinitely divisible point processes, Wiley, Chichester–New York–Brisbane, 1978 | MR | Zbl | MR | Zbl

[27] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[28] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 1: Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 ; A. Erdélyi, W. Magnus, F. Oberhettinger, G. F. Tricomi, Higher transcendental functions, v. 1, McGraw-Hill, New York, 1953 | MR | Zbl | MR | Zbl

[29] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986 ; A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series. V. 3: More special functions, Gordon and Breach, New York, 1990 | MR | Zbl | MR | Zbl

[30] M. Fukushima, Dirichlet forms and Markov processes, North-Holland Math. Library, 23, North-Holland, Amsterdam–New York; Konansha, Tokyo, 1980 | MR | Zbl

[31] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Stud. Math., 19, de Gruyter, Berlin, 1994 | MR | Zbl

[32] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 ; M. M. Vaĭnberg, Variational method and method of monotone operators in the theory of nonlinear equations, Wiley, New York–Toronto, 1973 | MR | Zbl | MR | Zbl

[33] V. R. Fatalov, “Tochnye asimptotiki bolshikh uklonenii dlya gaussovskikh mer v gilbertovom prostranstve”, Izv. NAN Armenii. Matematika, 27:5 (1992), 43–57 | MR | Zbl

[34] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 ; M. A. Naimark, Linear differential operators, I, II, Frederick Ungar Publ., New York, 1967, 1968 | MR | Zbl | MR | MR | Zbl | Zbl

[35] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[36] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1979 | MR | Zbl

[37] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, “Spektralnaya teoriya differentsialnykh operatorov”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 64, VINITI, M., 1989, 1–248 ; G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations, VII, Encyclopaedia Math. Sci., 64, Springer-Verlag, Berlin–Heidelberg, 1994, 1–261 | MR | Zbl | Zbl

[38] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 2, Mir, M., 1978 ; M. Reed, B. Simon, Methods of modern mathematical physics. V. 2: Fourier analysis, self-adjointness, Academic Press, New York, 1975 | MR | MR | Zbl

[39] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 ; N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, Reidel, Dordrecht, 1987 | MR | Zbl | MR | Zbl