Occupation times and exact asymptotics of small deviations of Bessel processes for
Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 721-752

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on exact asymptotics of the distributions of integral functionals of the occupation time of Bessel processes. Using these results, we obtain exact asymptotics of small deviations for Bessel processes in the $L^p$-norm. We use Laplace's method for the occupation times of Markov processes with continuous time. Computations are carried out for $p=2$ and $p=1$. We also solve extremal problems for the action functional.
@article{IM2_2007_71_4_a2,
     author = {V. R. Fatalov},
     title = {Occupation times and exact asymptotics of small deviations of {Bessel} processes for},
     journal = {Izvestiya. Mathematics },
     pages = {721--752},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Occupation times and exact asymptotics of small deviations of Bessel processes for
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 721
EP  - 752
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/
LA  - en
ID  - IM2_2007_71_4_a2
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Occupation times and exact asymptotics of small deviations of Bessel processes for
%J Izvestiya. Mathematics 
%D 2007
%P 721-752
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/
%G en
%F IM2_2007_71_4_a2
V. R. Fatalov. Occupation times and exact asymptotics of small deviations of Bessel processes for. Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 721-752. http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a2/