Growth of some varieties of Lie superalgebras
Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 657-672
Voir la notice de l'article provenant de la source Math-Net.Ru
We study numerical characteristics of varieties of Lie superalgebras and,
in particular, the growth of codimensions. An example of an insoluble
variety of almost polynomial growth is constructed. We prove that the
exponent of this variety is equal to three and calculate the growth
exponents for two earlier known soluble varieties.
@article{IM2_2007_71_4_a0,
author = {M. V. Zaicev and S. P. Mishchenko},
title = {Growth of some varieties of {Lie} superalgebras},
journal = {Izvestiya. Mathematics },
pages = {657--672},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a0/}
}
M. V. Zaicev; S. P. Mishchenko. Growth of some varieties of Lie superalgebras. Izvestiya. Mathematics , Tome 71 (2007) no. 4, pp. 657-672. http://geodesic.mathdoc.fr/item/IM2_2007_71_4_a0/