Real algebraic varieties and cobordism
Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 573-601.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two non-oriented cobordism classes that are obtained from a projective morphism of smooth real quasi-projective algebraic varieties. The first is induced by the map of complex points of the varieties and the second by the map of real points. We find and prove relations between these cobordism classes. In particular, we describe the restrictions imposed on the first by the vanishing of the second.
@article{IM2_2007_71_3_a6,
     author = {V. A. Krasnov},
     title = {Real algebraic varieties and cobordism},
     journal = {Izvestiya. Mathematics },
     pages = {573--601},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a6/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real algebraic varieties and cobordism
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 573
EP  - 601
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a6/
LA  - en
ID  - IM2_2007_71_3_a6
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real algebraic varieties and cobordism
%J Izvestiya. Mathematics 
%D 2007
%P 573-601
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a6/
%G en
%F IM2_2007_71_3_a6
V. A. Krasnov. Real algebraic varieties and cobordism. Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 573-601. http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a6/

[1] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977 | MR | Zbl | MR | Zbl

[2] D. Quillen, “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. Math., 7:1 (1971), 29–56 | DOI | MR | Zbl

[3] A. Dold, “Geometric cobordism and fixed point transfer”, Algebraic topology, Lecture Notes in Math., 673, Springer, Berlin, 1978, 32–87 | DOI | MR | Zbl

[4] R. Tom, “Nekotorye svoistva “v tselom” differentsiruemykh mnogoobrazii”, Rassloennye prostranstva i ikh prilozheniya, Sb. perevodov, IL, M., 1958, 293–351; R. Thom, “Quelques propriétés globales des varietés differentiables”, Comm. Math. Helv., 28 (1954), 17–68 | DOI | MR

[5] P. Konner, E. Floid, Gladkie periodicheskie otobrazheniya, Mir, M., 1969 ; P. E. Conner, E. E. Floyd, Differentiable periodic maps, Acad. Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964 | Zbl | MR | Zbl

[6] A. I. Degtyarev, V. M. Kharlamov, “Topologicheskie svoistva veschestvennykh algebraicheskikh mnogoobrazii: du côté de chez Rokhlin”, UMN, 55:4 (2000), 129–212 | MR | Zbl

[7] V. A. Krasnov, “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 ; V. A. Krasnov, “Harnack–Thom inequalities for mappings of real algebraic varieties”, Math. USSR-Izv., 22:2 (1984), 247–275 | MR | Zbl | DOI

[8] V. A. Krasnov, “Veschestvennye algebraicheskie GM-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[9] Y. B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monogr. Math., Springer-Verlag, 1998 | MR | Zbl

[10] M. Levine, F. Morel, “Cobordisme algébrique I, II”, C. R. Acad. Sci. Paris Sér. I Math., 332:8 (2001), 723–728 ; 9, 815–820 | DOI | MR | Zbl | DOI | MR | Zbl

[11] A. Borel, Seminar on transformation groups, Ann. of Math. Stud., 48, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl

[12] U-I Syan, Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979 ; Wu-yi Hsiang, Cohomology theory of topological transformation groups, Springer-Verlag, New York–Heidelberg, 1975 | MR | Zbl | MR | Zbl

[13] M. Levine, F. Morel, Algebraic cobordism. I, Preprint, 2002; http://www.math.uiuc.edu/K-theory/0547/index.html

[14] M. Levine, Algebraic cobordism. II, Preprint, 2002 ; http://www.math.uiuc.edu/K-theory/0577/index.html | MR

[15] V. A. Krasnov, “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 ; V. A. Krasnov, “Characteristic classes of vector bundles on a real algebraic variety”, Math. USSR-Izv., 39:1 (1992), 703–730 | MR | Zbl | DOI | Zbl

[16] V. A. Krasnov, “Algebraicheskie tsikly na veschestvennom algebraicheskom GM-mnogoobrazii i ikh prilozheniya”, Izv. RAN. Ser. matem., 57:4 (1993), 153–173 ; V. A. Krasnov, “Algebraic cycles on a real algebraic GM-manifold and their applications”, Russian Acad. Sci. Izv. Math., 43:1 (1994), 141–160 | MR | Zbl | DOI

[17] V. A. Krasnov, “Ob ekvivariantnykh kogomologiyakh Grotendika veschestvennogo algebraicheskogo mnogoobraziya i ikh prilozheniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 36–52 ; V. A. Krasnov, “On equivariant Grothendieck cohomology of a real algebraic variety, and its applications”, Russian Acad. Sci. Izv. Math., 44:3 (1995), 461–477 | MR | Zbl | DOI

[18] T. tom Dieck, “Steenrod-Operationen in Kobordismen-Theorien”, Math. Z., 107:5 (1968), 380–401 | DOI | MR | Zbl

[19] U. Fulton, Teoriya peresechenii, Mir, M., 1989 ; W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl

[20] T. tom Dik, Gruppy preobrazovanii i teoriya predstavlenii, Mir, M., 1982 ; T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer, Berlin, 1979 | MR | Zbl | DOI | MR | Zbl

[21] R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973 ; R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1968 | MR | Zbl | MR | Zbl

[22] V. A. Krasnov, “Veschestvennye algebraicheski maksimalnye mnogoobraziya”, Matem. zametki, 73:6 (2003), 853–860 | MR | Zbl