On the remainders of compactifications of mappings
Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 441-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Magill's theorems to locally compact Hausdorff mappings. We also give another description of all remainders of compactifications of a locally compact Hausdorff space and extend this description to locally compact Hausdorff and Tychonoff mappings.
@article{IM2_2007_71_3_a1,
     author = {E. N. Belyanova},
     title = {On the remainders of compactifications of mappings},
     journal = {Izvestiya. Mathematics },
     pages = {441--448},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a1/}
}
TY  - JOUR
AU  - E. N. Belyanova
TI  - On the remainders of compactifications of mappings
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 441
EP  - 448
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a1/
LA  - en
ID  - IM2_2007_71_3_a1
ER  - 
%0 Journal Article
%A E. N. Belyanova
%T On the remainders of compactifications of mappings
%J Izvestiya. Mathematics 
%D 2007
%P 441-448
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a1/
%G en
%F IM2_2007_71_3_a1
E. N. Belyanova. On the remainders of compactifications of mappings. Izvestiya. Mathematics , Tome 71 (2007) no. 3, pp. 441-448. http://geodesic.mathdoc.fr/item/IM2_2007_71_3_a1/

[1] K. D. Magill, jr., “A note on compactifications”, Math. Z., 94:5 (1966), 322–325 | DOI | MR | Zbl

[2] I. V. Bludova, G. Nordo, “On the posets of all the Hausdorff and all the Tychonoff compactifications of mappings”, Questions Answers Gen. Topology, 17:1 (1999), 47–55 | MR | Zbl

[3] B. A. Pasynkov, “O rasprostranenii na otobrazheniya nekotorykh ponyatii i utverzhdenii, kasayuschikhsya prostranstv”, Otobrazheniya i funktory, Izd-vo MGU, M., 1984, 72–102 | MR | Zbl

[4] E. N. Belyanova, “Opisanie vsekh $T_2$-bikompaktifikatsii lokalno bikompaktnogo $T_2$-prostranstva”, Nauch. tr. MPGU, Prometei, M., 2004, 13–19