A theorem on the approximation of a trigonometric sum by a shorter one
Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 341-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the approximation of a trigonometric sum by a shorter one with the constants in the remainder calculated concretely.
@article{IM2_2007_71_2_a3,
     author = {A. A. Karatsuba and M. A. Korolev},
     title = {A theorem on the approximation of a trigonometric sum by a shorter one},
     journal = {Izvestiya. Mathematics },
     pages = {341--370},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a3/}
}
TY  - JOUR
AU  - A. A. Karatsuba
AU  - M. A. Korolev
TI  - A theorem on the approximation of a trigonometric sum by a shorter one
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 341
EP  - 370
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a3/
LA  - en
ID  - IM2_2007_71_2_a3
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%A M. A. Korolev
%T A theorem on the approximation of a trigonometric sum by a shorter one
%J Izvestiya. Mathematics 
%D 2007
%P 341-370
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a3/
%G en
%F IM2_2007_71_2_a3
A. A. Karatsuba; M. A. Korolev. A theorem on the approximation of a trigonometric sum by a shorter one. Izvestiya. Mathematics , Tome 71 (2007) no. 2, pp. 341-370. http://geodesic.mathdoc.fr/item/IM2_2007_71_2_a3/

[1] G. H. Hardy, J. E. Littlewood, “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta Math., 41:1 (1917), 119–196 | DOI | MR | Zbl

[2] I. M. Vinogradov, “O srednem znachenii chisla klassov chisto korennykh form otritsatelnogo opredelitelya”, Soobscheniya Khark. matem. ob-va, 16 (1918), 10–38 | Zbl

[3] J. G. van der Corput, “Verschärfung der Abschätzung beim Teilerproblem”, Math. Ann., 87:1–2 (1922), 39–65 | DOI | MR | Zbl

[4] A. A. Karatsuba, “Approximation of exponential sums by shorter ones”, Proc. Indian Acad. Sci. Math. Sci., 97:1–3 (1987), 167–178 | DOI | MR | Zbl

[5] M. Fleischhauer, W. P. Schleich, “Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes–Cummings model”, Phys. Rev. A, 47:5 (1993), 4258–4269 | DOI

[6] E. A. Karatsuba, “Approximation of sums of oscillating summands in certain physical problems”, J. Math. Phys., 45:11 (2004), 4310–4321 | DOI | MR | Zbl

[7] É. Chassande-Mottin, A. Pai, “Best chirplet chain: Near-optimal detection of gravitational wave chirps”, Phys. Rev. D, 73 (2006), 042003 (23 pages) | DOI

[8] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983 ; A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993 | MR | Zbl | MR | Zbl