On necessary conditions for Fourier multipliers of weak type
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 75-95
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain necessary conditions for a bounded
function $\varphi$ to be a Fourier multiplier of weak type
$\bigl(\psi(L)(G),\psi(L)(G)\bigr)$, where $G=\mathbb R^d$
or $G=\mathbb T^d$, provided that the Young function $\psi(t)$
grows slower than $t\ln^{1/2}t$ as $t$ tends to infinity.
@article{IM2_2007_71_1_a5,
author = {A. V. Rozhdestvenskii},
title = {On necessary conditions for {Fourier} multipliers of weak type},
journal = {Izvestiya. Mathematics },
pages = {75--95},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a5/}
}
A. V. Rozhdestvenskii. On necessary conditions for Fourier multipliers of weak type. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 75-95. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a5/