On multiple Walsh series convergent over cubes
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 57-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Walsh functions on the binary group $G$ and study uniqueness sets for $N$-fold multiple Walsh series under convergence over cubes (in other words, $U_{N,\mathrm{cube}}$-sets). We prove that every finite set is a $U_{N,\mathrm{cube}}$-set, construct examples of countable $U_{N,\mathrm{cube}}$-sets and non-empty perfect $U_{N,\mathrm{cube}}$-sets, and give an example of a $U_{N,\mathrm{cube}}$-set having the maximum possible Hausdorff dimension.
@article{IM2_2007_71_1_a4,
     author = {M. G. Plotnikov},
     title = {On multiple {Walsh} series convergent over cubes},
     journal = {Izvestiya. Mathematics },
     pages = {57--73},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - On multiple Walsh series convergent over cubes
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 57
EP  - 73
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/
LA  - en
ID  - IM2_2007_71_1_a4
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T On multiple Walsh series convergent over cubes
%J Izvestiya. Mathematics 
%D 2007
%P 57-73
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/
%G en
%F IM2_2007_71_1_a4
M. G. Plotnikov. On multiple Walsh series convergent over cubes. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 57-73. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/

[1] Kh. O. Movsisyan, “O edinstvennosti dvoinykh ryadov po sistemam Khaara i Uolsha”, Izv. AN ArmSSR. Matematika, 9:1 (1974), 40–61 | MR

[2] V. A. Skvortsov, “O koeffitsientakh skhodyaschikhsya kratnykh ryadov Khaara i Uolsha”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1973, no. 6, 77–79 ; V. A. Skvortsov, “On the coefficients of convergent multiple Haar and Walsh series”, Mosc. Univ. Math. Bull., 28(1973):5/6 (1974), 119–121 | MR | Zbl | MR | Zbl

[3] S. F. Lukomskii, “O nekotorykh klassakh mnozhestv edinstvennosti kratnykh ryadov Uolsha”, Matem. sb., 180:7 (1989), 937–945 ; S. F. Lukomskiĭ, “On certain classes of sets of uniqueness of multiple Walsh series”, Math. USSR-Sb., 67:2 (1990), 393–401 | MR | Zbl | DOI

[4] Sh. T. Tetunashvili, “O nekotorykh kratnykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 ; Sh. T. Tetunashvili, “On some multiple functionseries and solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Math. USSR-Sb., 73:2 (1992), 517–534 | MR | Zbl | DOI | Zbl

[5] S. F. Lukomskii, Predstavlenie funktsii ryadami Uolsha i koeffitsienty skhodyaschikhsya ryadov Uolsha, Dis. $\dots$ dokt. fiz.-matem. nauk, SGU, Saratov, 1996

[6] S. F. Lukomskiĭ, “On a $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR | Zbl

[7] N. N. Kholschevnikova, “Ob'edinenie mnozhestv edinstvennosti kratnykh ryadov – Uolsha i trigonometricheskikh”, Matem. sb., 193:4 (2002), 135–160 | MR | Zbl

[8] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl

[9] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: teoriya i primeneniya, Nauka, M., 1987 ; B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Mathematics and its Applications (Soviet Series), 64, Kluwer Acad. Publ. Group, Dordrecht, 1991 | MR | Zbl | MR | Zbl

[10] R. E. A. C. Paley, “A remarkable series of orthogonal functions. I”, Proc. London Math. Soc. (2), 34 (1932), 241–264 | DOI | Zbl

[11] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[12] Ya. B. Pesin, Teoriya razmernosti i dinamicheskie sistemy: sovremennyi vzglyad i prilozheniya, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002

[13] L. M. Barreira, “A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems”, Ergodic Theory Dynam. Systems, 16:5 (1996), 871–927 | MR | Zbl

[14] N. K. Bari, Trigonometricheskie ryady, GIFML, M., 1961 ; N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964 | MR | MR | Zbl

[15] W. R. Wade, “Summing closed $U$-set for Walsh series”, Proc. Amer. Math. Soc., 29:1 (1971), 123–125 | DOI | MR | Zbl