On multiple Walsh series convergent over cubes
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 57-73

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Walsh functions on the binary group $G$ and study uniqueness sets for $N$-fold multiple Walsh series under convergence over cubes (in other words, $U_{N,\mathrm{cube}}$-sets). We prove that every finite set is a $U_{N,\mathrm{cube}}$-set, construct examples of countable $U_{N,\mathrm{cube}}$-sets and non-empty perfect $U_{N,\mathrm{cube}}$-sets, and give an example of a $U_{N,\mathrm{cube}}$-set having the maximum possible Hausdorff dimension.
@article{IM2_2007_71_1_a4,
     author = {M. G. Plotnikov},
     title = {On multiple {Walsh} series convergent over cubes},
     journal = {Izvestiya. Mathematics },
     pages = {57--73},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - On multiple Walsh series convergent over cubes
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 57
EP  - 73
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/
LA  - en
ID  - IM2_2007_71_1_a4
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T On multiple Walsh series convergent over cubes
%J Izvestiya. Mathematics 
%D 2007
%P 57-73
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/
%G en
%F IM2_2007_71_1_a4
M. G. Plotnikov. On multiple Walsh series convergent over cubes. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 57-73. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/