On multiple Walsh series convergent over cubes
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 57-73
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Walsh functions on the binary group $G$ and study uniqueness sets
for $N$-fold multiple Walsh series under convergence over cubes (in other
words, $U_{N,\mathrm{cube}}$-sets). We prove that every
finite set is a $U_{N,\mathrm{cube}}$-set, construct examples of countable
$U_{N,\mathrm{cube}}$-sets and non-empty perfect
$U_{N,\mathrm{cube}}$-sets, and give an example of
a $U_{N,\mathrm{cube}}$-set having the maximum
possible Hausdorff dimension.
@article{IM2_2007_71_1_a4,
author = {M. G. Plotnikov},
title = {On multiple {Walsh} series convergent over cubes},
journal = {Izvestiya. Mathematics },
pages = {57--73},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/}
}
M. G. Plotnikov. On multiple Walsh series convergent over cubes. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 57-73. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a4/