The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 15-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with non-negative solutions of the elliptic inequalities $\operatorname{div} A(x,Du)\ge F(x,u)$ in $\Omega$, where $A\colon\Omega\times\mathbb R^n\to\mathbb R^n$ and $F\colon\Omega\times[0,\infty)\to[0,\infty)$ are functions and $\Omega$ is an unbounded open subset of $\mathbb R^n$, $n\geqslant2$.
@article{IM2_2007_71_1_a2,
     author = {A. A. Kon'kov},
     title = {The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives},
     journal = {Izvestiya. Mathematics },
     pages = {15--51},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 15
EP  - 51
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/
LA  - en
ID  - IM2_2007_71_1_a2
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
%J Izvestiya. Mathematics 
%D 2007
%P 15-51
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/
%G en
%F IM2_2007_71_1_a2
A. A. Kon'kov. The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 15-51. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/

[1] M. L. Gerver, E. M. Landis, “Odno obobschenie teoremy o srednem dlya funktsii mnogikh peremennykh”, Dokl. AN SSSR, 146:4 (1962), 761–764 ; M. L. Gerver, E. M. Landis, “A generalization of the mean value theorem for functions of several variables”, Sov. Math. Dokl., 3 (1963), 1382–1385 | MR | Zbl

[2] A. A. Grigoryan, “O liuvilivykh teoremakh dlya garmonicheskikh funktsii s konechnym integralom Dirikhle”, Matem. sb., 132(174):4 (1987), 496–516 ; A. A. Grigor'yan, “On Liouville theorems for harmonic functions with finite Dirichlet integral”, Math. USSR-Sb., 60:2 (1988), 485–504 | MR | Zbl | DOI | Zbl

[3] V. A. Kondratev, E. M. Landis, “O kachestvennykh svoistvakh reshenii odnogo uravneniya vtorogo poryadka”, Matem. sb., 135(177):3 (1988), 346–360 ; V. A. Kondrat'ev, E. M. Landis, “On qualitative properties of solutions of a nonlinear equation of second order”, Math. USSR-Sb., 63:2 (1989), 337–350 | MR | Zbl | DOI | Zbl

[4] V. A. Kondratev, S. L. Eidelman, “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Dokl. RAN, 334:4 (1994), 427–428 | MR | Zbl

[5] A. A. Konkov, “O neotritsatelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. matem., 63:2 (1999), 41–126 | MR | Zbl

[6] A. A. Konkov, “O resheniyakh neavtonomnykh obyknovennykh uravnenii”, Izv. RAN. Ser. matem., 65:2 (2001), 81–126 | MR | Zbl

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 ; O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Mathematics in Science and Engineering, 46, Academic Press, New York, 1968 | MR | Zbl | MR | Zbl

[8] E. M. Landis, “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii (sluchai neskolkikh nezavisimykh peremennykh)”, UMN, 18:1 (1963), 3–62 | MR | Zbl

[9] E. M. Landis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 ; E. M. Landis, Second order equations of elliptic and parabolic type, Transl. Math. Monogr., 171, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl | MR | Zbl

[10] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17:1–2 (1963), 43–77 | MR | Zbl

[11] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[12] E. Mitidieri, S. I. Pokhozhaev, “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb R^N$”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam, Tr. MIAN, 18, Nauka, M., 1999, 192–222 | MR | Zbl

[13] E. Mitidieri, S. I. Pokhozhaev, Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, MAIK “Nauka/Interperiodika”, M., 2001 | MR | Zbl

[14] J. Serrin, “Local behavior of solutions of quasi-linear equations”, Acta Math., 111:1 (1964), 247–302 | DOI | MR | Zbl

[15] Y. Naito, H. Usami, “Nonexistence results of positive entire solutions for quasilinear elliptic inequalities”, Canad. Math. Bull., 40:2 (1997), 244–253 | MR | Zbl