The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 15-51
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with non-negative solutions of the elliptic inequalities $\operatorname{div} A(x,Du)\ge F(x,u)$ in $\Omega$, where $A\colon\Omega\times\mathbb R^n\to\mathbb R^n$ and $F\colon\Omega\times[0,\infty)\to[0,\infty)$ are functions and $\Omega$ is an unbounded open subset of $\mathbb R^n$, $n\geqslant2$.
@article{IM2_2007_71_1_a2,
author = {A. A. Kon'kov},
title = {The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives},
journal = {Izvestiya. Mathematics },
pages = {15--51},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/}
}
TY - JOUR AU - A. A. Kon'kov TI - The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives JO - Izvestiya. Mathematics PY - 2007 SP - 15 EP - 51 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/ LA - en ID - IM2_2007_71_1_a2 ER -
A. A. Kon'kov. The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 15-51. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/