Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_1_a2, author = {A. A. Kon'kov}, title = {The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives}, journal = {Izvestiya. Mathematics }, pages = {15--51}, publisher = {mathdoc}, volume = {71}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/} }
TY - JOUR AU - A. A. Kon'kov TI - The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives JO - Izvestiya. Mathematics PY - 2007 SP - 15 EP - 51 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/ LA - en ID - IM2_2007_71_1_a2 ER -
A. A. Kon'kov. The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 15-51. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/
[1] M. L. Gerver, E. M. Landis, “Odno obobschenie teoremy o srednem dlya funktsii mnogikh peremennykh”, Dokl. AN SSSR, 146:4 (1962), 761–764 ; M. L. Gerver, E. M. Landis, “A generalization of the mean value theorem for functions of several variables”, Sov. Math. Dokl., 3 (1963), 1382–1385 | MR | Zbl
[2] A. A. Grigoryan, “O liuvilivykh teoremakh dlya garmonicheskikh funktsii s konechnym integralom Dirikhle”, Matem. sb., 132(174):4 (1987), 496–516 ; A. A. Grigor'yan, “On Liouville theorems for harmonic functions with finite Dirichlet integral”, Math. USSR-Sb., 60:2 (1988), 485–504 | MR | Zbl | DOI | Zbl
[3] V. A. Kondratev, E. M. Landis, “O kachestvennykh svoistvakh reshenii odnogo uravneniya vtorogo poryadka”, Matem. sb., 135(177):3 (1988), 346–360 ; V. A. Kondrat'ev, E. M. Landis, “On qualitative properties of solutions of a nonlinear equation of second order”, Math. USSR-Sb., 63:2 (1989), 337–350 | MR | Zbl | DOI | Zbl
[4] V. A. Kondratev, S. L. Eidelman, “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Dokl. RAN, 334:4 (1994), 427–428 | MR | Zbl
[5] A. A. Konkov, “O neotritsatelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. matem., 63:2 (1999), 41–126 | MR | Zbl
[6] A. A. Konkov, “O resheniyakh neavtonomnykh obyknovennykh uravnenii”, Izv. RAN. Ser. matem., 65:2 (2001), 81–126 | MR | Zbl
[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 ; O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Mathematics in Science and Engineering, 46, Academic Press, New York, 1968 | MR | Zbl | MR | Zbl
[8] E. M. Landis, “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii (sluchai neskolkikh nezavisimykh peremennykh)”, UMN, 18:1 (1963), 3–62 | MR | Zbl
[9] E. M. Landis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 ; E. M. Landis, Second order equations of elliptic and parabolic type, Transl. Math. Monogr., 171, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl | MR | Zbl
[10] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 17:1–2 (1963), 43–77 | MR | Zbl
[11] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[12] E. Mitidieri, S. I. Pokhozhaev, “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb R^N$”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam, Tr. MIAN, 18, Nauka, M., 1999, 192–222 | MR | Zbl
[13] E. Mitidieri, S. I. Pokhozhaev, Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, MAIK “Nauka/Interperiodika”, M., 2001 | MR | Zbl
[14] J. Serrin, “Local behavior of solutions of quasi-linear equations”, Acta Math., 111:1 (1964), 247–302 | DOI | MR | Zbl
[15] Y. Naito, H. Usami, “Nonexistence results of positive entire solutions for quasilinear elliptic inequalities”, Canad. Math. Bull., 40:2 (1997), 244–253 | MR | Zbl