The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 15-51

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with non-negative solutions of the elliptic inequalities $\operatorname{div} A(x,Du)\ge F(x,u)$ in $\Omega$, where $A\colon\Omega\times\mathbb R^n\to\mathbb R^n$ and $F\colon\Omega\times[0,\infty)\to[0,\infty)$ are functions and $\Omega$ is an unbounded open subset of $\mathbb R^n$, $n\geqslant2$.
@article{IM2_2007_71_1_a2,
     author = {A. A. Kon'kov},
     title = {The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives},
     journal = {Izvestiya. Mathematics },
     pages = {15--51},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 15
EP  - 51
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/
LA  - en
ID  - IM2_2007_71_1_a2
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
%J Izvestiya. Mathematics 
%D 2007
%P 15-51
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/
%G en
%F IM2_2007_71_1_a2
A. A. Kon'kov. The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives. Izvestiya. Mathematics , Tome 71 (2007) no. 1, pp. 15-51. http://geodesic.mathdoc.fr/item/IM2_2007_71_1_a2/