On the mean value of the ladder epoch for random walks with a small drift
Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1225-1232.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove theorems on the asymptotic behaviour of the mean value of the time at which the non-negative half-axis is first attained for a random walk whose drift tends to zero. It is assumed that the distribution of jumps of the random walk belongs to the domain of attraction of a stable law with exponent $\alpha\in(1,2)$.
@article{IM2_2006_70_6_a5,
     author = {V. I. Lotov},
     title = {On the mean value of the ladder epoch for random walks with a small drift},
     journal = {Izvestiya. Mathematics },
     pages = {1225--1232},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a5/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - On the mean value of the ladder epoch for random walks with a small drift
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1225
EP  - 1232
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a5/
LA  - en
ID  - IM2_2006_70_6_a5
ER  - 
%0 Journal Article
%A V. I. Lotov
%T On the mean value of the ladder epoch for random walks with a small drift
%J Izvestiya. Mathematics 
%D 2006
%P 1225-1232
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a5/
%G en
%F IM2_2006_70_6_a5
V. I. Lotov. On the mean value of the ladder epoch for random walks with a small drift. Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1225-1232. http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a5/

[1] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965 | MR | Zbl

[2] Lotov V. I., “O neravenstvakh dlya momentov i dlya raspredeleniya lestnichnoi vysoty sluchainogo bluzhdaniya”, Sib. matem. zhurn., 43:4 (2002), 816–822 | MR | Zbl

[3] Zolotarev V. M., “O predstavlenii ustoichivykh zakonov integralami”, Tr. MIAN SSSR, 71, Nauka, M., 1964, 46–50 | MR | Zbl

[4] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl

[5] Spatǎru A., “Precise asymptotics in Spitzer's law of large numbers”, J. Theoret. Probab., 12:3 (1999), 811–819 | DOI | MR | Zbl

[6] de Haan L., Peng L., “Exact rates of convergence to a stable law”, J. London Math. Soc. (2), 59:3 (1999), 1134–1152 | DOI | MR | Zbl

[7] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975 | MR

[8] Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, Encyclopedia of mathematics and its applications, 27, Cambridge University Press, Cambridge, 1987 | MR | Zbl