Anisotropic classes of uniqueness of the solution of the Dirichlet
Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1165-1200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We select a class of uniqueness of the solutions of the quasi-elliptic equation with the Dirichlet condition on the boundary of an unbounded domain $\Omega\subset\mathbb R^{n+1}$ and show that for domains with irregular behaviour of the boundary this class can be wider than that established in [10] for second-order elliptic equations. For the Laplace equation we construct an example of non-uniqueness of solution of the Dirichlet problem that shows that the class of uniqueness found in this paper cannot be essentially extended.
@article{IM2_2006_70_6_a3,
     author = {L. M. Kozhevnikova},
     title = {Anisotropic classes of uniqueness of the solution of the {Dirichlet}},
     journal = {Izvestiya. Mathematics },
     pages = {1165--1200},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a3/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Anisotropic classes of uniqueness of the solution of the Dirichlet
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1165
EP  - 1200
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a3/
LA  - en
ID  - IM2_2006_70_6_a3
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Anisotropic classes of uniqueness of the solution of the Dirichlet
%J Izvestiya. Mathematics 
%D 2006
%P 1165-1200
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a3/
%G en
%F IM2_2006_70_6_a3
L. M. Kozhevnikova. Anisotropic classes of uniqueness of the solution of the Dirichlet. Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1165-1200. http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a3/

[1] Mikhailov V. P., “O pervoi kraevoi zadache dlya odnogo klassa gipoellipticheskikh uravnenii”, Matem. sb., 63:2 (1964), 238–264 | MR

[2] Mikhailov V. P., “Pervaya kraevaya zadacha dlya nekotorykh poluogranichennykh gipoellipticheskikh uravnenii”, Matem. sb., 64:1 (1964), 10–51 | MR | Zbl

[3] Phragmén E., Lindelöf E., “Sur une extension d'un principe classique de l'analyse et sur quelques proprietes des fonctions monogenes dans le voisinage d'un point singulier”, Acta Math., 31:1 (1908), 381–406 | DOI | MR | Zbl

[4] Landis E. M., Panasenko G. P., “Ob odnom variante teoremy Fragmena–Lindelëfa dlya ellipticheskikh uravnenii s koeffitsientami, periodicheskimi po vsem peremennym, krome odnoi”, Tr. seminara im. I. G. Petrovskogo, 5, 1979, 105–136 | MR | Zbl

[5] Toupin R. A., “Saint-Venant's principle”, Arch. Ration. Mech. Anal., 18:2 (1965), 83–96 | DOI | MR | Zbl

[6] Knowles J. K., “On Saint-Venant's principle in the two-dimensional linear theory of elasticity”, Arch. Ration. Mech. Anal., 21:1 (1966), 1–22 | DOI | MR

[7] Kondratev V. A., Kopachek I., Lenvenshvim D. M., Oleinik O. A., “Neuluchshaemye otsenki v prostranstvakh Gëldera i tochnyi printsip Sen-Venana dlya resheniya bigarmonicheskogo uravneniya”, Tr. MIAN SSSR, 166, Nauka, M., 1984, 91–106 | MR | Zbl

[8] Oleinik O. A., Iosifyan G. A., “O printsipe Sen-Venana v ploskoi teorii uprugosti”, DAN SSSR, 239:3 (1978), 530–533 | MR | Zbl

[9] Oleinik O. A., Iosifyan G. A., “Printsip Sen-Venana v ploskoi teorii uprugosti i kraevye zadachi dlya bigarmonicheskogo uravneniya v neogranichennoi oblasti”, Sib. matem. zhurn., 19:5 (1978), 1154–1165 | MR | Zbl

[10] Oleinik O. A., Iosifyan G. A., “Energeticheskie otsenki obobschennykh reshenii kraevykh zadach dlya ellipticheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, DAN SSSR, 232:6 (1977), 1257–1260 | MR | Zbl

[11] Oleinik O. A., Iosifyan G. A., “Ob ustranimykh osobennostyakh na granitse i edinstvennosti reshenii kraevykh zadach dlya ellipticheskikh i parabolicheskikh uravnenii vtorogo poryadka”, Funktsion. analiz i ego prilozh., 1977, no. 3, 54–67 | MR | Zbl

[12] Kondratev V. A., Oleinik O. A., “Teoremy edinstvennosti reshenii vneshnikh kraevykh zadach i analog printsipa Sen-Venana”, UMN, 39:4 (1984), 165–166 | MR | Zbl

[13] Kondratev V. A., Oleinik O. A., “O edinstvennosti reshenii kraevykh zadach v neogranichennykh oblastyakh i ob izolirovannykh osobykh tochkakh reshenii sistemy teorii uprugosti i ellipticheskikh uravnenii vtorogo poryadka”, UMN, 42:4 (1987), 189–190 | MR | Zbl

[14] Kozhevnikova L. M., “Stabilizatsiya resheniya pervoi smeshannoi zadachi dlya evolyutsionnogo kvaziellipticheskogo uravneniya”, Matem. sb., 196:7 (2005), 67–100 | MR | Zbl

[15] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR | Zbl

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[17] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[18] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl