Uniqueness theorems for solutions of the convolution equation
Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1077-1092.

Voir la notice de l'article provenant de la source Math-Net.Ru

Precise uniqueness theorems are proved for the solutions of a convolution equation on Riemannian symmetric spaces of non-compact type of rank $1$ and an application is given to lacunary series with respect to special functions.
@article{IM2_2006_70_6_a0,
     author = {V. V. Volchkov},
     title = {Uniqueness theorems for solutions of the convolution equation},
     journal = {Izvestiya. Mathematics },
     pages = {1077--1092},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Uniqueness theorems for solutions of the convolution equation
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 1077
EP  - 1092
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a0/
LA  - en
ID  - IM2_2006_70_6_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Uniqueness theorems for solutions of the convolution equation
%J Izvestiya. Mathematics 
%D 2006
%P 1077-1092
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a0/
%G en
%F IM2_2006_70_6_a0
V. V. Volchkov. Uniqueness theorems for solutions of the convolution equation. Izvestiya. Mathematics , Tome 70 (2006) no. 6, pp. 1077-1092. http://geodesic.mathdoc.fr/item/IM2_2006_70_6_a0/

[1] John F., “Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion”, Math. Ann., 111:1 (1935), 541–559 | DOI | MR | Zbl

[2] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958 | MR | Zbl

[3] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl

[4] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh na giperbolicheskikh prostranstvakh”, Izv. RAN. Ser. matem., 65:2 (2001), 3–26 | MR | Zbl

[5] Volchkov V. V., “Teoremy o srednem dlya odnogo klassa polinomov”, Sib. matem. zhurn., 35:4 (1994), 737–745 | MR | Zbl

[6] Volchkov V. V., “Teoremy edinstvennosti dlya kratnykh lakunarnykh trigonometricheskikh ryadov”, Matem. zametki, 51:6 (1992), 27–31 | MR | Zbl

[7] Volchkov V. V., “Ekstremalnye varianty problemy Pompeiyu”, Matem. zametki, 59:5 (1996), 671–680 | MR | Zbl

[8] Volchkov V. V., “Problemy tipa Pompeiyu na mnogoobraziyakh”, Dokl. AN Ukrainy, 1993, no. 11, 9–13 | MR | Zbl

[9] Volchkov V. V., Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl

[10] Volchkov V. V., “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | MR | Zbl

[11] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | MR | Zbl

[12] Volchkov V. V., “Teoremy edinstvennosti dlya nekotorykh klassov funktsii s nulevymi sfericheskimi srednimi”, Matem. zametki, 62:1 (1997), 59–65 | MR | Zbl

[13] Volchkov Vit. V., “Uniqueness theorems for mean periodic functions on complex hyperbolic spaces”, Anal. Math., 28:1 (2002), 61–76 | DOI | MR | Zbl

[14] Smith I. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Camb. Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[15] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR | Zbl

[16] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | MR | Zbl

[17] Helgason S., Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978 | MR | Zbl

[18] Helgason S., Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, 39, American Math. Soc., Providence, 1994 | MR | Zbl

[19] Levin B. Y., Lectures of entire functions, Translations of Mathematical Monographs, 150, American Math. Soc., Providence, 1996 | MR | Zbl

[20] Shahshahani M., Sitaram A., “The Pompeiu problem in exterior domains in symmetric spaces”, Contemp. Math., 63 (1987), 267–277 | MR | Zbl

[21] Berenstein C. A., Zalcman L., “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[22] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1973 | MR | Zbl

[23] Volchkov Vit. V., “Teoremy edinstvennosti dlya periodicheskikh v srednem funktsii na kvaternionnom giperbolicheskom prostranstve”, Matem. zametki, 74:1 (2003), 32–40 | MR | Zbl

[24] Harchaoui M., “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques réel et comlexe: cas des deux boules”, J. Analyse Math., 67 (1995), 1–37 | DOI | MR | Zbl

[25] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 54, VINITI, M., 1989, 5–111 | MR | Zbl

[26] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, 2-e izd., Nauka, M., 1991 | MR | Zbl

[27] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl

[28] Flensted-Jensen M., “Paley–Wiener type theorems for a differential operator connected with symmetric spaces”, Ark. Mat., 10:1 (1972), 143–162 | DOI | MR | Zbl

[29] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR | Zbl