M\"untz--Sz\'asz~type
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 1031-1050
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of completeness of the system of exponentials
$\exp\{-\lambda_nt\}$, $\operatorname{Re}\lambda_n>0$, in direct
products $E=E_1\times E_2$ of the spaces $E_1=E_1(0,1)$
and $E_2=E_2(1,\infty)$ of functions defined on $(0,1)$
and $(1,\infty)$, respectively. We describe rather broad classes of
spaces $E_1$ and $E_2$ such that the well-known condition of Szász
is necessary for the completeness of the above system in $E$ and
sufficient for this completeness.
@article{IM2_2006_70_5_a7,
author = {A. M. Sedletskii},
title = {M\"untz--Sz\'asz~type},
journal = {Izvestiya. Mathematics },
pages = {1031--1050},
publisher = {mathdoc},
volume = {70},
number = {5},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a7/}
}
A. M. Sedletskii. M\"untz--Sz\'asz~type. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 1031-1050. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a7/