On the fixed points of monotonic operators in the critical case
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 931-947.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing positive fixed points $x$ of monotonic operators $\varphi$ acting on a cone $K$ in a Banach space $E$. We assume that $\|\varphi x\|\le\|x\|+\gamma$, $\gamma>0$, for all $x\in K$. In the case when $\varphi$ has a so-called non-trivial dissipation functional we construct a solution in an extension of $E$, which is a Banach space or a Fréchet space. We consider examples in which we prove the solubility of a conservative integral equation on the half-line with a sum-difference kernel, and of a non-linear integral equation of Urysohn type in the critical case.
@article{IM2_2006_70_5_a3,
     author = {N. B. Engibaryan},
     title = {On the fixed points of monotonic operators in the critical case},
     journal = {Izvestiya. Mathematics },
     pages = {931--947},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - On the fixed points of monotonic operators in the critical case
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 931
EP  - 947
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/
LA  - en
ID  - IM2_2006_70_5_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T On the fixed points of monotonic operators in the critical case
%J Izvestiya. Mathematics 
%D 2006
%P 931-947
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/
%G en
%F IM2_2006_70_5_a3
N. B. Engibaryan. On the fixed points of monotonic operators in the critical case. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 931-947. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/

[1] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatlit, M., 1962 | MR | Zbl

[2] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[3] Hopf E., Mathematical problems of radiative equilibrium, Cambridge Tracts in Math. and Math. Phys., 31, Cambridge Univ. Press, London, 1934 | MR | Zbl

[4] Spitzer F., “The Wiener–Hopf equation whose kernel is a probability density”, Duke Math. J., 24:3 (1957), 327–343 | DOI | MR | Zbl

[5] Busbridge I. W., The mathematics of radiative transfer, Cambridge Tracts in Math. and Math. Phys., 50, Cambridge Univ. Press, Cambridge, 1960 | Zbl

[6] Sobolev V. V., Kurs teoreticheskoi astrofiziki, Nauka, M., 1967

[7] Maslennikov M. V., “Problema Milna s anizotropnym rasseyaniem”, Tr. MIAN SSSR, 97, 1968, 3–134 | MR | Zbl

[8] Sobolev V. V., Rasseyanie sveta v atmosferakh planet, Nauka, M., 1972

[9] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[10] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1984 | MR | Zbl

[11] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[12] Kozlov V. V., Teplovoe ravnovesie po Gibbsu i Puankare, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR | Zbl

[13] Batisheva Ya. G., Vedenyapin V. V., Kuchanov S. L., “A mathematical problem of the theory of gelation”, J. Math. Phys., 43:7 (2002), 3695–3703 | DOI | MR | Zbl

[14] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[15] Krein M. G., Shmulyan Yu. L., “Uravneniya Vinera–Khopfa, yadra kotorykh dopuskayut integralnoe predstavlenie cherez eksponenty”, Izv. AN ArmSSR, Matematika, 17:4 (1982), 307–327 ; 5, 335–375 | MR | Zbl | MR | Zbl

[16] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki, Matem. analiz, 22, VINITI, M., 1984, 175–244 | MR | Zbl

[17] Engibaryan N. B., Arabadzhyan L. G., “O nekotorykh zadachakh faktorizatsii dlya integralnykh operatorov tipa svertki”, Differents. uravneniya, 26:8 (1990), 1442–1452 | MR | Zbl

[18] Engibaryan B. N., “Primenenie mnogokratnoi faktorizatsii k odnorodnomu uravneniyu svertki”, Izv. NAN RA, Matematika, 32:1 (1997), 38–48 | MR | Zbl

[19] Engibaryan N. B., “Postanovka i reshenie nekotorykh zadach faktorizatsii integralnykh operatorov”, Matem. sb., 191:12 (2000), 61–76 | MR | Zbl

[20] Engibaryan N. B., “Uravneniya v svertkakh, soderzhaschie singulyarnye veroyatnostnye raspredeleniya”, Izv. RAN. Ser. matem., 60:2 (1996), 21–48 | MR | Zbl

[21] Engibaryan N. B., “Konservativnye sistemy integralnykh uravnenii svertki na polupryamoi i vsei pryamoi”, Matem. sb., 193:6 (2002), 61–82 | MR | Zbl

[22] Yengibarian N. B., “Renewal equation on the whole line”, Stochastic Process. Appl., 85:2 (2000), 237–247 | DOI | MR | Zbl

[23] Yengibarian N. B., “Factorization of Markov chains”, J. Theoret. Probab., 17:2 (2004), 459–481 | DOI | MR | Zbl

[24] Krasnoselskii M. A., Zabreiko P. P. i dr, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[25] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR | Zbl