On the fixed points of monotonic operators in the critical case
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 931-947

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing positive fixed points $x$ of monotonic operators $\varphi$ acting on a cone $K$ in a Banach space $E$. We assume that $\|\varphi x\|\le\|x\|+\gamma$, $\gamma>0$, for all $x\in K$. In the case when $\varphi$ has a so-called non-trivial dissipation functional we construct a solution in an extension of $E$, which is a Banach space or a Fréchet space. We consider examples in which we prove the solubility of a conservative integral equation on the half-line with a sum-difference kernel, and of a non-linear integral equation of Urysohn type in the critical case.
@article{IM2_2006_70_5_a3,
     author = {N. B. Engibaryan},
     title = {On the fixed points of monotonic operators in the critical case},
     journal = {Izvestiya. Mathematics },
     pages = {931--947},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - On the fixed points of monotonic operators in the critical case
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 931
EP  - 947
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/
LA  - en
ID  - IM2_2006_70_5_a3
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T On the fixed points of monotonic operators in the critical case
%J Izvestiya. Mathematics 
%D 2006
%P 931-947
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/
%G en
%F IM2_2006_70_5_a3
N. B. Engibaryan. On the fixed points of monotonic operators in the critical case. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 931-947. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/