On the fixed points of monotonic operators in the critical case
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 931-947
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of constructing positive fixed points $x$ of
monotonic operators $\varphi$ acting on a cone $K$ in a Banach
space $E$. We assume that $\|\varphi x\|\le\|x\|+\gamma$, $\gamma>0$, for all $x\in K$. In the case when $\varphi$ has a
so-called non-trivial dissipation functional we construct a solution
in an extension of $E$, which is a Banach space or a Fréchet
space. We consider examples in which we prove the solubility of a
conservative integral equation on the half-line with a
sum-difference kernel, and of a non-linear integral equation of
Urysohn type in the critical case.
@article{IM2_2006_70_5_a3,
author = {N. B. Engibaryan},
title = {On the fixed points of monotonic operators in the critical case},
journal = {Izvestiya. Mathematics },
pages = {931--947},
publisher = {mathdoc},
volume = {70},
number = {5},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/}
}
N. B. Engibaryan. On the fixed points of monotonic operators in the critical case. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 931-947. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a3/