Holomorphic bundles on diagonal Hopf manifolds
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 867-882

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that every stable holomorphic bundle on the Hopf manifold $M=(\mathbb C^n\setminus0)/\langle A\rangle$ with $\dim M\geqslant 3$, where $A\in\operatorname{GL}(n,\mathbb C)$ is a diagonal linear operator with all eigenvalues satisfying $|\alpha_i|1$, can be lifted to a $\widetilde G_F$-equivariant coherent sheaf on $\mathbb C^n$, where $\widetilde G_F\cong(\mathbb C^*)^l$ is a commutative Lie group acting on $\mathbb C^n$ and containing $A$. This is used to show that all bundles on $M$ are filtrable, that is, admit a filtration by a sequence $F_i$ of coherent sheaves with all subquotients $F_i/F_{i-1}$ of rank $1$.
@article{IM2_2006_70_5_a1,
     author = {M. S. Verbitsky},
     title = {Holomorphic bundles on diagonal {Hopf} manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {867--882},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/}
}
TY  - JOUR
AU  - M. S. Verbitsky
TI  - Holomorphic bundles on diagonal Hopf manifolds
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 867
EP  - 882
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/
LA  - en
ID  - IM2_2006_70_5_a1
ER  - 
%0 Journal Article
%A M. S. Verbitsky
%T Holomorphic bundles on diagonal Hopf manifolds
%J Izvestiya. Mathematics 
%D 2006
%P 867-882
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/
%G en
%F IM2_2006_70_5_a1
M. S. Verbitsky. Holomorphic bundles on diagonal Hopf manifolds. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 867-882. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/