Holomorphic bundles on diagonal Hopf manifolds
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 867-882.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that every stable holomorphic bundle on the Hopf manifold $M=(\mathbb C^n\setminus0)/\langle A\rangle$ with $\dim M\geqslant 3$, where $A\in\operatorname{GL}(n,\mathbb C)$ is a diagonal linear operator with all eigenvalues satisfying $|\alpha_i|1$, can be lifted to a $\widetilde G_F$-equivariant coherent sheaf on $\mathbb C^n$, where $\widetilde G_F\cong(\mathbb C^*)^l$ is a commutative Lie group acting on $\mathbb C^n$ and containing $A$. This is used to show that all bundles on $M$ are filtrable, that is, admit a filtration by a sequence $F_i$ of coherent sheaves with all subquotients $F_i/F_{i-1}$ of rank $1$.
@article{IM2_2006_70_5_a1,
     author = {M. S. Verbitsky},
     title = {Holomorphic bundles on diagonal {Hopf} manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {867--882},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/}
}
TY  - JOUR
AU  - M. S. Verbitsky
TI  - Holomorphic bundles on diagonal Hopf manifolds
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 867
EP  - 882
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/
LA  - en
ID  - IM2_2006_70_5_a1
ER  - 
%0 Journal Article
%A M. S. Verbitsky
%T Holomorphic bundles on diagonal Hopf manifolds
%J Izvestiya. Mathematics 
%D 2006
%P 867-882
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/
%G en
%F IM2_2006_70_5_a1
M. S. Verbitsky. Holomorphic bundles on diagonal Hopf manifolds. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 867-882. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a1/

[1] Baily W. L., “On the imbedding of $V$-manifolds in projective spaces”, Amer. J. Math., 79 (1957), 403–430 | DOI | MR | Zbl

[2] Bando S., Siu Y.-T., “Stable sheaves and Einstein–Hermitian metrics”, Geometry and Analysis on Complex Manifolds, Festschrift for Professor S. Kobayashi's 60th Birthday, eds. T. Mabuchi, J. Noguchi, T. Ochiai, World Scientific, Singapore, 1994, 39–50 | MR | Zbl

[3] Brînzănescu V., Moraru R., Stable bundles on non-Kähler elliptic surfaces, , 15 pp. math.AG/0306192

[4] Brînzănescu V., Moraru R., Twisted Fourier–Mukai transforms and bundles on non-Kähler elliptic surfaces, \tt, 13 pp. math.AG/0309031 | MR

[5] Bruasse L., “Harder–Narasimhan filtration on non-Kähler manifolds”, Internat. J. Math., 12:5 (2001), 579–594 | DOI | MR | Zbl

[6] Dragomir S., Ornea L., Locally conformal Kähler geometry, Progress in Mathematics, 155, Birkhäuser, Boston, 1998 | MR | Zbl

[7] Gauduchon P., “La 1-forme de torsion d'une variété hermitienne compacte”, Math. Ann., 267:4 (1984), 495–518 | DOI | MR | Zbl

[8] Gauduchon P., Ornea L., “Locally conformally Kähler metrics on Hopf surfaces”, Ann. Inst. Fourier (Grenoble), 48 (1998), 1107–1127 | MR | Zbl

[9] Kamishima Y., Ornea L., “Geometric flow on compact locally conformally Kähler manifolds”, Tohoku Math. J. (2), 57:2 (2005), 201–221 ; math.DG/0105040 | DOI | MR | Zbl

[10] Kato M., “Some remarks on subvarieties of Hopf manifolds”, A Symposium on Complex Manifolds (Kyoto, 1974), 240, Sûrikaisekikenkyûsho Kókyûroku, 1975, 64–87 | MR | Zbl

[11] Kato M., “On a characterization of submanifolds of Hopf manifolds”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 191–206 | MR | Zbl

[12] Li J., Yau S.-T., “Hermitian–Yang–Mills connection on non-Kähler manifolds”, Mathematical aspects of string theory, ed. S.-T. Yau, World Scientific Publ., Singapore, 1987, 560–573 | MR | Zbl

[13] Lübke M., Teleman A., The Kobayashi–Hitchin correspondence, World Scientific Publ., Singapore, 1995 | MR | Zbl

[14] Lübke M., Teleman A., The universal Kobayashi–Hitchin correspondence on Hermitian manifolds, , 90 pp. math.DG/0402341 | MR

[15] Moraru R., “Integrable systems associated to a Hopf surface”, Canad. J. Math., 55:3 (2003), 609–635 | MR | Zbl

[16] Moraru R., Stable bundles on Hopf manifolds, math.AG/0408439

[17] Okonek K., Shneider M., Shpindler X., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | MR | Zbl

[18] Ornea L., Verbitsky M., “Structure theorem for compact Vaisman manifolds”, Math. Res. Lett., 10:5–6 (2003), 799–805 ; math.DG/0305259 | MR | Zbl

[19] Ornea L., Verbitsky M., “An immersion theorem for Vaisman manifolds”, Math. Ann., 332:1 (2005), 121–143 ; math.AG/0306077 | DOI | MR | Zbl

[20] Ornea L., Verbitsky M., Locally conformal Kähler manifolds with potential, , 11 pp. math.AG/0407231

[21] Vaisman I., “Generalized Hopf manifolds”, Geom. Dedicata, 13:3 (1982), 231–255 | DOI | MR | Zbl

[22] Vaisman I., “A survey of generalized Hopf manifolds”, Conference on differential geometry on homogeneous spaces (Turin, 1983), Rend. Sem. Mat. Univ. Politec. Torino, 1983, Special issue, 1984, 205–221 | MR | Zbl

[23] Verbitsky M., Vanishing theorems for locally conformal hyperkähler manifolds, 2003, , 41 pp. math.DG/0302219 | MR

[24] Verbitsky M., “Stable bundles on positive principal elliptic fibrations”, Math. Res. Lett., 12:2–3 (2005), 251–264 ; math.AG/0403430 | MR | Zbl