Preservation of approximative properties of subsets
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 857-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the subsets $\Pi\subset\mathbb R^n$ whose intersection with a Chebyshev set (sun, or strict sun) $M$ in $\ell^\infty(n)$ preserves the approximative properties of $M$ in $\ell^\infty(n)$.
@article{IM2_2006_70_5_a0,
     author = {A. R. Alimov},
     title = {Preservation of approximative properties of subsets},
     journal = {Izvestiya. Mathematics },
     pages = {857--866},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Preservation of approximative properties of subsets
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 857
EP  - 866
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/
LA  - en
ID  - IM2_2006_70_5_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Preservation of approximative properties of subsets
%J Izvestiya. Mathematics 
%D 2006
%P 857-866
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/
%G en
%F IM2_2006_70_5_a0
A. R. Alimov. Preservation of approximative properties of subsets. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 857-866. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/

[1] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[2] Karlov M. I., Tsarkov I. G., “Vypuklost i svyaznost chebyshevskikh mnozhestv i solnts”, Fundam. i priklad. matematika, 3:4 (1997), 967–978 | MR | Zbl

[3] Braess D., “Geometrical characterizations for nonlinear uniform approximation”, J. Approx. Theory, 11:3 (1974), 260–274 | DOI | MR | Zbl

[4] Berens H., Hetzelt L., “Die Metrische Struktur der Sonnen in $\ell_\infty(n)$”, Aequationes Math., 27:1 (1984), 274–287 | DOI | MR | Zbl

[5] Brown A. L., “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[6] Alimov A. R., “Geometricheskoe stroenie chebyshevskikh mnozhestv v $\ell^\infty(n)$”, Funktsion. analiz i ego prilozh., 39:1 (2005), 1–10 | MR | Zbl

[7] Alimov A. R., “Geometricheskaya kharakterizatsiya strogikh solnts v $\ell^\infty(n)$”, Matem. zametki, 70:1 (2001), 3–11 | MR | Zbl

[8] Alimov A. R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Ser. matem., 69:4 (2005), 3–18 | MR | Zbl

[9] Alimov A. R., “Characterisations of Chebyshev sets in $c_0$”, J. Approx. Theory, 129:2 (2004), 217–229 | DOI | MR | Zbl

[10] Alimov A. R., “Geometricheskoe stroenie chebyshevskikh mnozhestv v prostranstvakh $\ell^\infty(n)$, $c_0$ i $c$”, UMN, 60:3 (2005), 171–172 | MR

[11] Franchetti C., Cheney E. W., “The embedding of proximinal sets”, J. Approx. Theory, 48:2 (1986), 213–225 | DOI | MR | Zbl

[12] Vasileva A. A., “Zamknutye promezhutki v $C(T)$ i $L_\varphi(T)$ i ikh approksimativnye svoistva”, Matem. zametki, 73:1 (2003), 135–138 | MR | Zbl

[13] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. matem., 68:4 (2004), 75–116 | MR | Zbl

[14] Garkavi A. L., Zamyatin V. N., “Uslovnyi chebyshevskii tsentr ogranichennogo mnozhestva nepreryvnykh funktsii”, Matem. zametki, 18:1 (1975), 67–76 | MR | Zbl

[15] Khavinson S. Ya., “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Anal. Math., 29:2 (2003), 87–105 | DOI | MR

[16] Gruber P. M., “Planar Chebyshev sets”, Mathematical structures, computational mathematics, mathematical modelling, v. 2, Pap. dedic. L. Iliev 70th Anniv., Bulgar. Acad. Sci., Sofia, 1984, 184–191 | MR | Zbl

[17] Berens H., Hetzelt L., “Suns and contractive retracts in the plane”, Teoriya priblizhenii funktsii, Tr. Mezhdunar. konf. (Kiev, 31 maya – 5 iyunya, 1983), eds. N. P. Kornechuk i dr., Nauka, M., 1983

[18] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Proc. Centre Math. Appl. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl

[19] A. L. Brown, “Suns in polyhedral spaces”, Seminar of Mathem. Analysis, Proceedings (Univ. Malaga and Seville (Spain), Sept. 2002 – Feb. 2003), eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl

[20] Brosowski B., Wegmann R., “Characterisierung bester Approximationen in normierten Vektorraumen”, J. Approx. Theory, 3:4 (1970), 369–397 | DOI | MR | Zbl

[21] Amir D., Deutsch F., “Suns, moons and quasi-polyhedra”, J. Approx. Theory, 6:2 (1972), 176–201 | DOI | MR | Zbl

[22] Dunham Ch. B., “Characterizability and uniqueness in real Chebyshev approximation”, J. Approx. Theory, 2:4 (1969), 374–383 | DOI | MR | Zbl

[23] Boltyanski V., Martini H., Soltan P. S., Excursions into combinatorial geometry, Springer-Verlag, Berlin, 1997 | MR | Zbl