Preservation of approximative properties of subsets
Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 857-866

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the subsets $\Pi\subset\mathbb R^n$ whose intersection with a Chebyshev set (sun, or strict sun) $M$ in $\ell^\infty(n)$ preserves the approximative properties of $M$ in $\ell^\infty(n)$.
@article{IM2_2006_70_5_a0,
     author = {A. R. Alimov},
     title = {Preservation of approximative properties of subsets},
     journal = {Izvestiya. Mathematics },
     pages = {857--866},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Preservation of approximative properties of subsets
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 857
EP  - 866
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/
LA  - en
ID  - IM2_2006_70_5_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Preservation of approximative properties of subsets
%J Izvestiya. Mathematics 
%D 2006
%P 857-866
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/
%G en
%F IM2_2006_70_5_a0
A. R. Alimov. Preservation of approximative properties of subsets. Izvestiya. Mathematics , Tome 70 (2006) no. 5, pp. 857-866. http://geodesic.mathdoc.fr/item/IM2_2006_70_5_a0/