Local extremal problems for bounded analytic functions without zeros
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 841-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class $B(t)$, $t>0$, of all functions $f(z,t)=e^{-t}+c_1(t)z+c_2(t)z^2+\dots$ that are analytic in the unit disc $U$ and such that $0|f(z,t)|1$ in $U$, we obtain asymptotic estimates for the coefficients for small and sufficiently large $t>0$. We suggest an algorithm for determining those $t>0$ for which the canonical functions provide the local maximum of $\operatorname{Re}c_n(t)$ in $B(t)$. We describe the set of functionals $L(f)=\sum_{k=0}^n\lambda_kc_k$ for which the canonical functions provide the maximum of $\operatorname{Re}L(f)$ in $B(t)$ for small and large values of $t$. The proofs are based on optimization methods for solutions of control systems of differential equations.
@article{IM2_2006_70_4_a7,
     author = {D. V. Prokhorov and S. V. Romanova},
     title = {Local extremal problems for bounded analytic functions without zeros},
     journal = {Izvestiya. Mathematics },
     pages = {841--856},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - S. V. Romanova
TI  - Local extremal problems for bounded analytic functions without zeros
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 841
EP  - 856
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/
LA  - en
ID  - IM2_2006_70_4_a7
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A S. V. Romanova
%T Local extremal problems for bounded analytic functions without zeros
%J Izvestiya. Mathematics 
%D 2006
%P 841-856
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/
%G en
%F IM2_2006_70_4_a7
D. V. Prokhorov; S. V. Romanova. Local extremal problems for bounded analytic functions without zeros. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 841-856. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/

[1] Prokhorov D. V., “Koeffitsienty golomorfnykh funktsii”, Kompleksnyi analiz i teoriya predstavlenii, Itogi nauki i tekhniki. Ser. sovrem. matem. i ee prilozh. Tematicheskie obzory, 71, VINITI, M., 2000

[2] Brown J. E., “On a coefficient problem for nonvanishing $H^p$ functions”, Complex Var. Theory Appl., 4:3 (1985), 253–265 | MR | Zbl

[3] Tan De Lin, “Coefficient estimates for bounded nonvanishing functions”, Chinese Ann. Math. A, 4:1 (1983), 97–104 | MR | Zbl

[4] Ermers R., Coefficient estimates for bounded nonvanishing functions, P.H.D. Thesis for grade of Doctor in Mathematics and Information Science, Katholieke Universiteit, Nijmegen, 1990

[5] Horowitz Ch., “Coefficients of nonvanishing functions in $H^{\infty}$”, Israel J. Math., 30:3 (1978), 285–291 | DOI | MR | Zbl

[6] Hummel J. A., Scheinberg S., Zalcman L., “A coefficient problem for bounded nonvanishing functions”, J. Anal. Math., 31 (1977), 169–190 | DOI | MR | Zbl

[7] Lewandowski Z., Szynal J., “On the Krzyz conjecture and related problems”, XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995), eds. I. Laine, O. Martio, Walter de Gruyter, Berlin, 1996, 257–268 | MR | Zbl

[8] Peretz R., “Applications of subordination theory to the class of bounded nonvanising functions”, Complex Var. Theory Appl., 17:3–4 (1992), 213–222 | MR | Zbl

[9] Prokhorov D. V., Szynal J., “Coefficient estimates for bounded nonvanishing functions”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 29:5–6 (1981), 223–230 | MR | Zbl

[10] Prokhorov D. V., Szynal J., “Inverse coefficients for $(\alpha,\beta)$-convex functions”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 35 (1981), 125–143 | MR | Zbl

[11] Szapiel W., “A new approach to the Krzyz conjecture”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 48 (1994), 169–192 | MR | Zbl

[12] Krzyz J., “Coefficient problem for bounded nonvanishing functions”, Ann. Polon. Math., 20 (1967–1968), 314 | MR

[13] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976 | MR | Zbl

[14] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, 3-e izd., Nauka, M., 1976 | MR | Zbl

[15] Gamkrelidze R. V., Osnovy teorii optimalnogo upravleniya, Izd-vo Tbilisskogo universiteta, Tbilisi, 1977 | MR

[16] Romanova S. V., “Asimptoticheskie otsenki lineinykh funktsionalov dlya ogranichennykh funktsii, ne prinimayuschikh nulevogo znacheniya”, Izv. vuzov. Matematika, 2002, no. 11, 83–85 | MR | Zbl

[17] Rudin U., Osnovy matematicheskogo analiza, Mir, M., 1976