Local extremal problems for bounded analytic functions without zeros
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 841-856
Voir la notice de l'article provenant de la source Math-Net.Ru
In the class $B(t)$, $t>0$, of all functions
$f(z,t)=e^{-t}+c_1(t)z+c_2(t)z^2+\dots$ that are analytic in the
unit disc $U$ and such that $0|f(z,t)|1$ in $U$, we obtain
asymptotic estimates for the coefficients for small and sufficiently
large $t>0$. We suggest an algorithm for determining those $t>0$ for
which the canonical functions provide the local maximum
of $\operatorname{Re}c_n(t)$ in $B(t)$. We describe the set of
functionals $L(f)=\sum_{k=0}^n\lambda_kc_k$ for which the canonical
functions provide the maximum of $\operatorname{Re}L(f)$ in $B(t)$
for small and large values of $t$. The proofs are based on
optimization methods for solutions of control systems of
differential equations.
@article{IM2_2006_70_4_a7,
author = {D. V. Prokhorov and S. V. Romanova},
title = {Local extremal problems for bounded analytic functions without zeros},
journal = {Izvestiya. Mathematics },
pages = {841--856},
publisher = {mathdoc},
volume = {70},
number = {4},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/}
}
D. V. Prokhorov; S. V. Romanova. Local extremal problems for bounded analytic functions without zeros. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 841-856. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/