Local extremal problems for bounded analytic functions without zeros
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 841-856

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class $B(t)$, $t>0$, of all functions $f(z,t)=e^{-t}+c_1(t)z+c_2(t)z^2+\dots$ that are analytic in the unit disc $U$ and such that $0|f(z,t)|1$ in $U$, we obtain asymptotic estimates for the coefficients for small and sufficiently large $t>0$. We suggest an algorithm for determining those $t>0$ for which the canonical functions provide the local maximum of $\operatorname{Re}c_n(t)$ in $B(t)$. We describe the set of functionals $L(f)=\sum_{k=0}^n\lambda_kc_k$ for which the canonical functions provide the maximum of $\operatorname{Re}L(f)$ in $B(t)$ for small and large values of $t$. The proofs are based on optimization methods for solutions of control systems of differential equations.
@article{IM2_2006_70_4_a7,
     author = {D. V. Prokhorov and S. V. Romanova},
     title = {Local extremal problems for bounded analytic functions without zeros},
     journal = {Izvestiya. Mathematics },
     pages = {841--856},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - S. V. Romanova
TI  - Local extremal problems for bounded analytic functions without zeros
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 841
EP  - 856
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/
LA  - en
ID  - IM2_2006_70_4_a7
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A S. V. Romanova
%T Local extremal problems for bounded analytic functions without zeros
%J Izvestiya. Mathematics 
%D 2006
%P 841-856
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/
%G en
%F IM2_2006_70_4_a7
D. V. Prokhorov; S. V. Romanova. Local extremal problems for bounded analytic functions without zeros. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 841-856. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a7/