Rigid isotopy classification of real three-dimensional cubics
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 731-768
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the space of non-singular real three-dimensional cubics has
precisely nine connected components. We also study the space of real
canonical curves of genus 4 and prove, in particular, that it
consists of eight connected components.
@article{IM2_2006_70_4_a4,
author = {V. A. Krasnov},
title = {Rigid isotopy classification of real three-dimensional cubics},
journal = {Izvestiya. Mathematics },
pages = {731--768},
publisher = {mathdoc},
volume = {70},
number = {4},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/}
}
V. A. Krasnov. Rigid isotopy classification of real three-dimensional cubics. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 731-768. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/