Rigid isotopy classification of real three-dimensional cubics
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 731-768

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the space of non-singular real three-dimensional cubics has precisely nine connected components. We also study the space of real canonical curves of genus 4 and prove, in particular, that it consists of eight connected components.
@article{IM2_2006_70_4_a4,
     author = {V. A. Krasnov},
     title = {Rigid isotopy classification of real three-dimensional cubics},
     journal = {Izvestiya. Mathematics },
     pages = {731--768},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Rigid isotopy classification of real three-dimensional cubics
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 731
EP  - 768
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/
LA  - en
ID  - IM2_2006_70_4_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Rigid isotopy classification of real three-dimensional cubics
%J Izvestiya. Mathematics 
%D 2006
%P 731-768
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/
%G en
%F IM2_2006_70_4_a4
V. A. Krasnov. Rigid isotopy classification of real three-dimensional cubics. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 731-768. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/