Rigid isotopy classification of real three-dimensional cubics
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 731-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the space of non-singular real three-dimensional cubics has precisely nine connected components. We also study the space of real canonical curves of genus 4 and prove, in particular, that it consists of eight connected components.
@article{IM2_2006_70_4_a4,
     author = {V. A. Krasnov},
     title = {Rigid isotopy classification of real three-dimensional cubics},
     journal = {Izvestiya. Mathematics },
     pages = {731--768},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Rigid isotopy classification of real three-dimensional cubics
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 731
EP  - 768
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/
LA  - en
ID  - IM2_2006_70_4_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Rigid isotopy classification of real three-dimensional cubics
%J Izvestiya. Mathematics 
%D 2006
%P 731-768
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/
%G en
%F IM2_2006_70_4_a4
V. A. Krasnov. Rigid isotopy classification of real three-dimensional cubics. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 731-768. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a4/

[1] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funkts. analiz i ego prilozh., 5:3 (1971), 1–9 | MR | Zbl

[2] Arnold V. I., “Normalnye formy funktsii vblizi vyrozhdennykh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego prilozh., 6:4 (1972), 3–25 | MR | Zbl

[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. II. Monodromiya i asimptotika integralov, Nauka, M., 1984 | MR | Zbl

[4] Clemens C. H., Griffiths P. A., “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2), 95:2 (1972), 281–356 | DOI | MR | Zbl

[5] Degtyarev A., Itenberg I., Kharlamov V., Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | MR | Zbl

[6] Degtyarev A. I., Zvonilov V. I., “Zhestkaya izotopicheskaya klassifikatsiya veschestvennykh algebraicheskikh krivykh bistepeni $(3,3)$ na kvadrikakh”, Matem. zametki, 66:6 (1999), 810–815 | MR | Zbl

[7] Griffiths Ph., Harris J., “Algebraic geometry and local differntial geometry”, Ann. Sci. Ecole Norm. Sup. (4), 12:3 (1979), 355–432 | MR | Zbl

[8] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961 | Zbl

[9] Zvonilov V. I., “Kompleksnye topologicheskie invarianty veschestvennykh algebraicheskikh krivykh na giperboloide i ellipsoide”, Algebra i analiz, 3:5 (1991), 88–108 | MR | Zbl

[10] Gudkov D. A., Usachev A. K., “Neosobye krivye mladshikh poryadkov na giperboloide”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gork. gos. un-t, Gorkii, 1980, 96–103 | MR

[11] Kleiman S. L., “Chislennaya teoriya osobennostei”, UMN, 35:6 (1980), 69–148 | MR | Zbl

[12] Klein F., “Ueber Flächen dritter Ordnung”, Math. Ann., 6:4 (1873), 551–581 | DOI | MR | Zbl

[13] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR | Zbl

[14] Krasnov V. A., “Vyrozhdeniya veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 49:4 (1985), 798–827 | MR | Zbl

[15] Krasnov V. A., “Veschestvennye algebraicheskie GM-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[16] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[17] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[18] Rokhlin V. A., “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, UMN, 33:5 (1978), 77–89 | MR | Zbl

[19] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, UMN, 27:5 (1972), 3–50 | MR | Zbl