Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_4_a0, author = {A. N. Bakhvalov}, title = {On local behaviour of multi-dimensional harmonic variation}, journal = {Izvestiya. Mathematics }, pages = {641--660}, publisher = {mathdoc}, volume = {70}, number = {4}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a0/} }
A. N. Bakhvalov. On local behaviour of multi-dimensional harmonic variation. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 641-660. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a0/
[1] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia math., 44:1 (1972), 107–117 | MR | Zbl
[2] Saakyan A. A., “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN ArmSSR. Matem., 21:6 (1986), 517–529 | MR | Zbl
[3] Sablin A. I., Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1987
[4] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Matematika, 1987, no. 10, 66–68 | MR | Zbl
[5] Bakhvalov A. N., “Nepreryvnost po $\Lambda$-variatsii funktsii mnogikh peremennykh i skhodimost kratnykh ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl
[6] Bakhvalov A. N., “Predstavlenie neperiodicheskikh funktsii ogranichennoi $\Lambda$-variatsii integralom Fure v mnogomernom sluchae”, Izv. RAN. Ser. matem., 67:6 (2003), 3–22 | MR | Zbl
[7] Waterman D., “On $\Lambda$-bounded variation”, Studia math., 57:1 (1976), 33–45 | MR | Zbl
[8] Bakhvalov A. N., “O povedenii $\Lambda$-variatsii funktsii dvukh peremennykh v okrestnosti regulyarnoi tochki”, Vestn. Mosk. un-ta. Ser. 1. Mat., Mekh., 2002, no. 1, 3–10 | MR | Zbl