On local behaviour of multi-dimensional harmonic variation
Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 641-660.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the behaviour of harmonic variation in a neighbourhood of a regular point for functions belonging to some multi-dimensional Waterman classes. As a consequence, some new results are obtained on the convergence of multiple trigonometric Fourier series for functions in these classes.
Keywords: Local extremal problems for bounded analytic nonvanishing functions; multiple Fourier series.
@article{IM2_2006_70_4_a0,
     author = {A. N. Bakhvalov},
     title = {On local behaviour of multi-dimensional harmonic variation},
     journal = {Izvestiya. Mathematics },
     pages = {641--660},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a0/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - On local behaviour of multi-dimensional harmonic variation
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 641
EP  - 660
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a0/
LA  - en
ID  - IM2_2006_70_4_a0
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T On local behaviour of multi-dimensional harmonic variation
%J Izvestiya. Mathematics 
%D 2006
%P 641-660
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a0/
%G en
%F IM2_2006_70_4_a0
A. N. Bakhvalov. On local behaviour of multi-dimensional harmonic variation. Izvestiya. Mathematics , Tome 70 (2006) no. 4, pp. 641-660. http://geodesic.mathdoc.fr/item/IM2_2006_70_4_a0/

[1] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia math., 44:1 (1972), 107–117 | MR | Zbl

[2] Saakyan A. A., “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN ArmSSR. Matem., 21:6 (1986), 517–529 | MR | Zbl

[3] Sablin A. I., Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1987

[4] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Matematika, 1987, no. 10, 66–68 | MR | Zbl

[5] Bakhvalov A. N., “Nepreryvnost po $\Lambda$-variatsii funktsii mnogikh peremennykh i skhodimost kratnykh ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl

[6] Bakhvalov A. N., “Predstavlenie neperiodicheskikh funktsii ogranichennoi $\Lambda$-variatsii integralom Fure v mnogomernom sluchae”, Izv. RAN. Ser. matem., 67:6 (2003), 3–22 | MR | Zbl

[7] Waterman D., “On $\Lambda$-bounded variation”, Studia math., 57:1 (1976), 33–45 | MR | Zbl

[8] Bakhvalov A. N., “O povedenii $\Lambda$-variatsii funktsii dvukh peremennykh v okrestnosti regulyarnoi tochki”, Vestn. Mosk. un-ta. Ser. 1. Mat., Mekh., 2002, no. 1, 3–10 | MR | Zbl