Local inequalities and birational superrigidity of Fano varieties
Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 605-639

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain local inequalities for log canonical thresholds and multiplicities of movable log pairs. We prove the non-rationality and birational superrigidity of the following Fano varieties: a double covering of a smooth cubic hypersurface in $\mathbb P^n$ branched over a nodal divisor that is cut out by a hypersurface of degree $2(n-3)\ge 10$; a cyclic triple covering of a smooth quadric hypersurface in $\mathbb P^{2r+2}$ branched over a nodal divisor that is cut out by a hypersurface of degree $r\ge 3$; a double covering of a smooth complete intersection of two quadric hypersurfaces in $\mathbb P^n$ branched over a smooth divisor that is cut out by a hypersurface of degree $n-4\ge 6$.
@article{IM2_2006_70_3_a4,
     author = {I. A. Cheltsov},
     title = {Local inequalities and birational superrigidity of {Fano} varieties},
     journal = {Izvestiya. Mathematics },
     pages = {605--639},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a4/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Local inequalities and birational superrigidity of Fano varieties
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 605
EP  - 639
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a4/
LA  - en
ID  - IM2_2006_70_3_a4
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Local inequalities and birational superrigidity of Fano varieties
%J Izvestiya. Mathematics 
%D 2006
%P 605-639
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a4/
%G en
%F IM2_2006_70_3_a4
I. A. Cheltsov. Local inequalities and birational superrigidity of Fano varieties. Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 605-639. http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a4/