Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_3_a0, author = {M. A. Korolev}, title = {On multiple zeros of the {Riemann} zeta function}, journal = {Izvestiya. Mathematics }, pages = {427--446}, publisher = {mathdoc}, volume = {70}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a0/} }
M. A. Korolev. On multiple zeros of the Riemann zeta function. Izvestiya. Mathematics , Tome 70 (2006) no. 3, pp. 427-446. http://geodesic.mathdoc.fr/item/IM2_2006_70_3_a0/
[1] Karatsuba A. A., Korolëv M. A., “Argument dzeta-funktsii Rimana”, UMN, 60:3 (2005), 41–96 | MR | Zbl
[2] Ramachandra K., Sankaranarayanan A., “On some theorems of Littlewood and Selberg. I”, J. Number Theory, 44:3 (1993), 281–291 | DOI | MR | Zbl
[3] Montgomery H. L., “The pair correlation of zeros of the zeta function”, Analytic number theory, 24 (1973), 181–193 | MR | Zbl
[4] Cheer A. Y., Goldston D. A., “Simple zeros of the Riemann zeta-function”, Proc. Amer. Math. Soc., 118:2 (1993), 365–372 | DOI | MR | Zbl
[5] Montgomery H. L., “Distribution of the zeros of the zeta function”, Proc. of the Int. Cong. for Math., 1, Vancouver, 1975, 379–381 | MR | Zbl
[6] Conrey J. B., Ghosh A., Gonek S. M., “Simple zeros of the Riemann zeta-function”, Proc. London Math. Soc., 76:3 (1998), 165–372 | DOI | MR | Zbl
[7] Fujii A., “On the distribution of the zeros of the Riemann zeta-function in short intervals”, Bull. Amer. Math. Soc., 81:1 (1975), 139–142 | DOI | MR | Zbl
[8] Karatsuba A. A., “O funktsii $S(t)$”, Izv. RAN. Ser. matem., 60:5 (1996), 27–56 | MR | Zbl
[9] Korolëv M. A., “Ob argumente dzeta-funktsii Rimana na kriticheskoi pryamoi”, Izv. RAN. Ser. matem., 67:2 (2003), 21–60 | MR | Zbl
[10] Ghosh A., “On Riemann's zeta-function – sign changes of $S(T)$”, Recent Progress in Analytic Number Theory, Vol. 1, Academic Press, London–New York, 1981, 25–46 | MR | Zbl
[11] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl