Exact asymptotic expansions for solutions of multi-dimensional
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 363-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles.
@article{IM2_2006_70_2_a5,
     author = {M. S. Sgibnev},
     title = {Exact asymptotic expansions for solutions of multi-dimensional},
     journal = {Izvestiya. Mathematics },
     pages = {363--383},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a5/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - Exact asymptotic expansions for solutions of multi-dimensional
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 363
EP  - 383
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a5/
LA  - en
ID  - IM2_2006_70_2_a5
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T Exact asymptotic expansions for solutions of multi-dimensional
%J Izvestiya. Mathematics 
%D 2006
%P 363-383
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a5/
%G en
%F IM2_2006_70_2_a5
M. S. Sgibnev. Exact asymptotic expansions for solutions of multi-dimensional. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 363-383. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a5/

[1] Sgibnev M. S., “Polumultiplikativnye otsenki dlya resheniya mnogomernogo uravneniya vosstanovleniya”, Izv. RAN. Ser. matem., 66:3 (2002), 159–174 | MR | Zbl

[2] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[3] Athreya K. B., Ney P. E., “A Markov process approach to systems of renewal equations with application to branching processes”, Branching processes. Advances in Probability and Related Topics, 5, Marcel Dekker, N. Y., 1978, 293–317 | MR | Zbl

[4] Sevastyanov B. A., Chistyakov V. P., “Uravneniya mnogomernogo vosstanovleniya i momenty vetvyaschikhsya protsessov”, Teoriya veroyatnostei i ee primeneniya, 16:2 (1971), 201–217 | MR | Zbl

[5] Crump K. S., “On systems of renewal equations”, J. Math. Anal. Appl., 30 (1970), 425–434 | DOI | MR | Zbl

[6] Crump K. S., “On systems of renewal equations: the reducible case”, J. Math. Anal. Appl., 31 (1970), 517–528 | DOI | MR | Zbl

[7] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR | Zbl

[8] Chistyakov V. P., “Teorema o summakh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teoriya veroyatnostei i ee primeneniya, 9:4 (1964), 710–718 | MR | Zbl

[9] Chover J., Ney P., Wainger S., “Degeneracy properties of subcritical branching processes”, Ann. Probab., 1 (1973), 663–673 | DOI | MR | Zbl

[10] Chover J., Ney P., Wainger S., “Functions of probability measures”, J. Analyse Math., 26 (1973), 255–302 | DOI | MR | Zbl

[11] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[12] Sgibnev M. S., “Banakhovy algebry mer klassa $\mathcal{S}(\gamma)$”, Sib. matem. zhurn., 29:5 (1988), 162–171 | MR | Zbl

[13] Wermer J., Banach Algebras and Several Complex Variables, Springer-Verlag, N. Y., 1976 | MR | Zbl

[14] Sgibnev M. S., “Exact asymptotic behaviour of the distribution of the supremum”, Statist. Probab. Lett., 52 (2001), 301–311 | DOI | MR | Zbl

[15] Sgibnev M. S., “An asymptotic expansion for the distribution of the supremum of a random walk”, Studia Math., 140 (2000), 41–55 | MR | Zbl

[16] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl

[17] Athreya K. B., Ney P. E., Branching Processes, Springer-Verlag, Berlin, 1972 | MR | Zbl

[18] Sgibnev M. S., “Exact asymptotic behaviour of the expected number of particles of an age-dependent branching process”, Yokohama Math. J., 49 (2002), 131–147 | MR | Zbl