Bilinear and trigonometric approximations of periodic functions
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 277-306

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain order-sharp estimates for bilinear approximations of periodic functions of $2d$ variables of the form $f(x,y)=f(x-y)$, $x, y\in \pi_d = \prod_{j=1}^d[-\pi, \pi]$, obtained from functions $f(x)\in B_{p, \theta}^r$, $1\le p\infty$, by translating the argument $x\in \pi_d$ by vectors $y\in \pi_d$. We also study the deviations of step hyperbolic Fourier sums on the classes $B_{1, \theta}^r$ and the best orthogonal trigonometric approximations in $L_q$, $ 1$, of functions belonging to these classes.
@article{IM2_2006_70_2_a3,
     author = {A. S. Romanyuk},
     title = {Bilinear and trigonometric approximations of periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {277--306},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Bilinear and trigonometric approximations of periodic functions
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 277
EP  - 306
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/
LA  - en
ID  - IM2_2006_70_2_a3
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Bilinear and trigonometric approximations of periodic functions
%J Izvestiya. Mathematics 
%D 2006
%P 277-306
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/
%G en
%F IM2_2006_70_2_a3
A. S. Romanyuk. Bilinear and trigonometric approximations of periodic functions. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 277-306. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/