Bilinear and trigonometric approximations of periodic functions
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 277-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain order-sharp estimates for bilinear approximations of periodic functions of $2d$ variables of the form $f(x,y)=f(x-y)$, $x, y\in \pi_d = \prod_{j=1}^d[-\pi, \pi]$, obtained from functions $f(x)\in B_{p, \theta}^r$, $1\le p\infty$, by translating the argument $x\in \pi_d$ by vectors $y\in \pi_d$. We also study the deviations of step hyperbolic Fourier sums on the classes $B_{1, \theta}^r$ and the best orthogonal trigonometric approximations in $L_q$, $ 1$, of functions belonging to these classes.
@article{IM2_2006_70_2_a3,
     author = {A. S. Romanyuk},
     title = {Bilinear and trigonometric approximations of periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {277--306},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Bilinear and trigonometric approximations of periodic functions
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 277
EP  - 306
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/
LA  - en
ID  - IM2_2006_70_2_a3
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Bilinear and trigonometric approximations of periodic functions
%J Izvestiya. Mathematics 
%D 2006
%P 277-306
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/
%G en
%F IM2_2006_70_2_a3
A. S. Romanyuk. Bilinear and trigonometric approximations of periodic functions. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 277-306. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/

[1] Besov O. V., “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, Dokl. AN SSSR, 126:6 (1959), 1163–1165 | MR | Zbl

[2] Lizorkin P. I., Nikolskii S. M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN, 187, 1989, 143–161 | MR | Zbl

[3] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178, 1986, 3–113 | MR | Zbl

[4] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl

[5] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, 1951, 244–278 | MR | Zbl

[6] Jakson D., “Certain problem of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI

[7] Ismagilov R. S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl

[8] Schmidt E., “Zur Theorie der linearen und nichlincaren Integralgleichungen. I”, Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl

[9] Micchelli C. A., Pinkus A., “Some problems in the approximation of functions of two variables and $n$-widths of integral operators”, J. Approxim. Theory, 24 (1978), 51–77 | DOI | MR | Zbl

[10] Miroshin N. V., Khromov V. V., “Ob odnoi zadache nailuchshei approksimatsii funktsii mnogikh peremennykh”, Matem. zametki, 32:5 (1982), 721–727 | MR | Zbl

[11] Temlyakov V. N., “O priblizhenii periodicheskikh funktsii mnogikh peremennykh”, Dokl. AN SSSR, 279:2 (1984), 301–305 | MR | Zbl

[12] Temlyakov V. N., “Ob asimptoticheskom povedenii nailuchshikh priblizhenii individualnykh funktsii”, Tr. MIAN, 172, 1985, 313–324 | MR | Zbl

[13] Temlyakov V. N., “Priblizhenie periodicheskikh funktsii mnogikh peremennykh kombinatsiyami funktsii, zavisyaschikh ot menshego chisla peremennykh”, Tr. MIAN, 173, 1986, 243–252 | MR | Zbl

[14] Temlyakov V. N., “Otsenki nailuchshikh bilineinykh priblizhenii periodicheskikh funktsii”, Tr. MIAN, 181, 1988, 250–267 | MR | Zbl

[15] Babaev M.-B. A., “Priblizhenie sobolevskikh klassov funktsii summami proizvedenii funktsii menshego chisla peremennykh”, Matem. zametki, 48:6 (1990), 10–21 | MR | Zbl

[16] Babaev M.-B. A., “O poryadke priblizheniya sobolevskogo klassa $W_q^r$ bilineinymi formami v $L_p$, $1\le q\le p\le 2$”, Matem. sb., 182:1 (1991), 122–129 | MR | Zbl

[17] Romanyuk A. S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. matem., 67:2 (2003), 61–100 | MR | Zbl

[18] Belinskii E. S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh periodicheskikh funktsii s ogranichennoi smeshannoi proizvodnoi”, Issledovanie po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslav. un-t, Yaroslavl, 1988, 16–33 | MR | Zbl

[19] Romanyuk A. S., “O nailuchshikh trigonometricheskikh priblizheniyakh i kolmogorovskikh poperechnikakh klassov Besova funktsii mnogikh peremennykh”, Ukr. matem. zhurn., 45:5 (1993), 663–675 | MR | Zbl

[20] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[21] Galeev E. M., “Priblizhenie nekotorykh klassov periodicheskikh funktsii mnogikh peremennykh summami Fure v metrike $\widetilde{\mathscr L}_p$”, UMN, 32:4 (1977), 251–252 | MR | Zbl

[22] Galeev E. M., “Poperechniki po Kolmogorovu klassov periodicheskikh funktsii mnogikh peremennykh $\widetilde W_p^{\bar\alpha}$ i $\widetilde H_p^{\bar \alpha}$ v prostranstve $\tilde L_q$”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 916–934 | MR | Zbl

[23] Romanyuk A. S., “O kolmogorovskikh i lineinykh poperechnikakh klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Issledovaniya po teorii priblizheniya funktsii, Sb. nauch. tr. AN USSR, In-t matematiki, Kiev, 1991, 86–92 | MR

[24] Romanyuk A. S., “Priblizhenie klassov Besova periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_q$”, Ukr. matem. zhurn., 43:10 (1991), 1398–1408 | MR | Zbl

[25] Romanyuk A. S., “Priblizhenie klassov periodicheskikh funktsii mnogikh peremennykh”, Matem. zametki, 71:1 (2002), 109–121 | MR | Zbl

[26] Khardi G., Littlvud D., Polia G., Neravenstva, IL, M., 1948 | MR | Zbl

[27] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl

[28] Belinskii E. S., “Priblizhenie periodicheskikh funktsii mnogikh peremennykh “plavayuschei” sistemoi eksponent i trigonometricheskie poperechniki”, Dokl. AN SSSR, 284:6 (1985), 1294–1297 | MR | Zbl