Bilinear and trigonometric approximations of periodic functions
Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 277-306
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain order-sharp estimates for bilinear approximations of
periodic functions of $2d$ variables of the form $f(x,y)=f(x-y)$, $x, y\in \pi_d = \prod_{j=1}^d[-\pi, \pi]$, obtained from functions
$f(x)\in B_{p, \theta}^r$, $1\le p\infty$, by translating the
argument $x\in \pi_d$ by vectors $y\in \pi_d$. We also study the
deviations of step hyperbolic Fourier sums on the classes $B_{1,
\theta}^r$ and the best orthogonal trigonometric approximations
in $L_q$, $ 1$, of functions belonging to these classes.
@article{IM2_2006_70_2_a3,
author = {A. S. Romanyuk},
title = {Bilinear and trigonometric approximations of periodic functions},
journal = {Izvestiya. Mathematics },
pages = {277--306},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/}
}
A. S. Romanyuk. Bilinear and trigonometric approximations of periodic functions. Izvestiya. Mathematics , Tome 70 (2006) no. 2, pp. 277-306. http://geodesic.mathdoc.fr/item/IM2_2006_70_2_a3/