Periodic solutions of a non-linear wave equation with homogeneous boundary conditions
Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 109-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of time-periodic solutions of a non-linear wave equation with homogeneous boundary conditions. The non-linear term either has polynomial growth or satisfies a “non-resonance” condition.
@article{IM2_2006_70_1_a4,
     author = {I. A. Rudakov},
     title = {Periodic solutions of a non-linear wave equation with homogeneous boundary conditions},
     journal = {Izvestiya. Mathematics },
     pages = {109--120},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a4/}
}
TY  - JOUR
AU  - I. A. Rudakov
TI  - Periodic solutions of a non-linear wave equation with homogeneous boundary conditions
JO  - Izvestiya. Mathematics 
PY  - 2006
SP  - 109
EP  - 120
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a4/
LA  - en
ID  - IM2_2006_70_1_a4
ER  - 
%0 Journal Article
%A I. A. Rudakov
%T Periodic solutions of a non-linear wave equation with homogeneous boundary conditions
%J Izvestiya. Mathematics 
%D 2006
%P 109-120
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a4/
%G en
%F IM2_2006_70_1_a4
I. A. Rudakov. Periodic solutions of a non-linear wave equation with homogeneous boundary conditions. Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 109-120. http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a4/