Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2006_70_1_a1, author = {V. V. Zhikov and A. L. Piatnitski}, title = {Homogenization of random singular structures and random measures}, journal = {Izvestiya. Mathematics }, pages = {19--67}, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a1/} }
V. V. Zhikov; A. L. Piatnitski. Homogenization of random singular structures and random measures. Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 19-67. http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a1/
[1] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl
[2] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl
[3] Zhikov V. V., “K tekhnike usredneniya variatsionnykh zadach”, Funktsion. analiz i ego prilozh., 33:1 (1999), 14–29 | MR | Zbl
[4] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl
[5] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | MR | Zbl
[6] Zhikov V. V., “Usrednenie v sluchainykh perforirovannykh oblastyakh obschego vida”, Matem. zametki, 53:1 (1993), 41–58 | MR | Zbl
[7] Kozlov S. M., “Usrednenie sluchainykh operatorov”, Matem. sb., 109:2 (1979), 188–202 | MR | Zbl
[8] Bouchitte G., Buttazzo G., Seppecher P., “Energies with respect to a measure and applications to low-dimensional structures”, Calc. Var. Part. Diff. Eq., 5:1 (1997), 37–54 | DOI | MR | Zbl
[9] Bouchitte G., Fragala I., “Homogenization of thin structures by two-scale method with respect to measures”, SIAM J. Math. Anal., 32:6 (2001), 1198–1226 | DOI | MR | Zbl
[10] Bouchitte G., Buttazzo G., Fragala I., “Convergence of Sobolev spaces on varying manifolds”, J. Geom. Anal., 11 (2001), 399–422 | MR | Zbl
[11] Bourgeat A., Mikelic A., Wright S., “On the stochastic two-scale convergence in the mean and applications”, J. Reine Angew. Math., 456 (1994), 19–51 | MR | Zbl
[12] Chechkin G. A., Jikov V. V., Lukkassen D., Piatnitski A. L., “On homogenization of networks and junctions”, Asymptotic Analysis, 30 (2002), 61–80 | MR | Zbl
[13] Daley D. J., Vere-Jones D., An Introduction to the Theory of Point Processes, Springer-Verlag, N. Y., 1988 | MR | Zbl
[14] Jikov V. V., Kozlov S. M., Oleinik O. A., Homogenization of Differential Operator and Integral Functionals, Springer-Verlag, N. Y., 1994 | MR | Zbl
[15] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic Analysis of Periodic Structures, North-Holland Publ. Comp., Amsterdam, 1978 | MR | Zbl
[16] Grimmett G., Percolation, 2 ed., Fundamental Principles of Mathematical Sciences, 321, Springer-Verlag, Berlin, 1999 | MR | Zbl
[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl
[18] Kesten H., Percolation theory for mathematicians, Progress in Probability and Statistics, 2, Birkhäuser, Boston, 1982 | MR | Zbl
[19] Zhikov V. V., “Zamechanie o sobolevskikh prostranstvakh”, Sovremennaya matematika i ee prilozh., 10 (2003), 77–79 | MR | Zbl
[20] Pastukhova S. E., “O skhodimosti giperbolicheskikh polugrupp v peremennom prostranstve”, Dokl. RAN, 397:5 (2004), 596–601 | MR
[21] Pastukhova S. E., “Approksimativnye usloviya i predelnyi perekhod v sobolevskikh prostranstvakh na tonkikh i sostavnykh strukturakh”, Sovremennaya matematika i ee prilozh., 16 (2004), 47–63 | MR
[22] Pastukhova S. E., “Ob approksimativnykh svoistvakh sobolevskikh prostranstv teorii uprugosti na tonkikh sterzhnevykh strukturakh”, Sovremennaya matematika i ee prilozh., 12 (2003), 99–106 | MR | Zbl
[23] Zhikov V. V., “Asimptoticheskie zadachi, svyazannye s usredneniem teploprovodnosti v perforirovannykh oblastyakh”, Matem. sb., 181:10 (1990), 1283–1305 | MR | Zbl
[24] Papanicolaou G., Varadhan S. R. S., “Boundary value problems with rapidly oscillating random coefficients. Random fields. Rigorous results in statistical mechanics and quantum field theory”, Colloq. Math. Soc. Janos Bolyai, 27 (1981), 835–873 | MR | Zbl
[25] Sznitman A.-S., Brownian motion, obstacles and random media, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998 | MR | Zbl
[26] Varadhan S. R. S., “Random walks in a random environment”, Proc. Indian Acad. Sci. Math. Sci., 114:4 (2004), 309–318 | DOI | MR | Zbl