Non-extendible finite polycycles
Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a fairly simple proof of a result announced in [2] that there are only seven non-extendible finite $(r,q)$-polycycles: the tetrahedron without a face, the cube without a face, the octahedron without a face, the dodecahedron without a face, the icosahedron without a face, the split-vertex octahedron and the split-vertex icosahedron.
@article{IM2_2006_70_1_a0,
author = {M. Deza and S. V. Shpektorov and M. I. Shtogrin},
title = {Non-extendible finite polycycles},
journal = {Izvestiya. Mathematics },
pages = {1--18},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a0/}
}
M. Deza; S. V. Shpektorov; M. I. Shtogrin. Non-extendible finite polycycles. Izvestiya. Mathematics , Tome 70 (2006) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/IM2_2006_70_1_a0/