On the theory of mainstay parallelohedra
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1257-1277

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1998 the first author announced a theorem stating that every primitive $n$-dimensional parallelohedron can be represented, up to an affine transformation, as a weighted Minkowski sum of parallelohedra belonging to a certain finite set of $n'$-dimensional $(n'\leqslant n)$ mainstay parallelohedra situated in a special way. This paper contains a detailed proof of this theorem in a refined and definitive form.
@article{IM2_2005_69_6_a9,
     author = {S. S. Ryshkov and E. A. Bolshakova},
     title = {On the theory of mainstay parallelohedra},
     journal = {Izvestiya. Mathematics },
     pages = {1257--1277},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a9/}
}
TY  - JOUR
AU  - S. S. Ryshkov
AU  - E. A. Bolshakova
TI  - On the theory of mainstay parallelohedra
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1257
EP  - 1277
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a9/
LA  - en
ID  - IM2_2005_69_6_a9
ER  - 
%0 Journal Article
%A S. S. Ryshkov
%A E. A. Bolshakova
%T On the theory of mainstay parallelohedra
%J Izvestiya. Mathematics 
%D 2005
%P 1257-1277
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a9/
%G en
%F IM2_2005_69_6_a9
S. S. Ryshkov; E. A. Bolshakova. On the theory of mainstay parallelohedra. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1257-1277. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a9/