Uniformization of strictly pseudoconvex domains.~II
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1203-1210.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if two strictly pseudoconvex Stein domains with real-analytic boundaries have biholomorphic universal coverings, then their boundaries are locally biholomorphically equivalent.
@article{IM2_2005_69_6_a6,
     author = {S. Yu. Nemirovski and R. G. Shafikov},
     title = {Uniformization of strictly pseudoconvex {domains.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {1203--1210},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a6/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
AU  - R. G. Shafikov
TI  - Uniformization of strictly pseudoconvex domains.~II
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1203
EP  - 1210
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a6/
LA  - en
ID  - IM2_2005_69_6_a6
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%A R. G. Shafikov
%T Uniformization of strictly pseudoconvex domains.~II
%J Izvestiya. Mathematics 
%D 2005
%P 1203-1210
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a6/
%G en
%F IM2_2005_69_6_a6
S. Yu. Nemirovski; R. G. Shafikov. Uniformization of strictly pseudoconvex domains.~II. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1203-1210. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a6/

[1] Burns D., Shnider S., “Spherical hypersurfaces in complex manifolds”, Invent. Math., 33 (1976), 223–246 | DOI | MR | Zbl

[2] Eastwood A., “A propos des variétés hyperboliques complétes”, C. R. Acad. Sci. Paris. Sér. A-B, 280 (1975), A1071–A1074 | MR

[3] Fornæss J. E., Løw E., “Proper holomorphic mappings”, Math. Scand., 58 (1986), 311–322 | MR | Zbl

[4] Goldman W., Kapovich M., Leeb B., “Complex hyperbolic manifolds homotopy equivalent to a Riemann surface”, Comm. Anal. Geom., 9 (2001), 61–95 | MR | Zbl

[5] Graham I., “Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $\mathbb{C}^{n}$ with smooth boundary”, Trans. Amer. Math. Soc., 207 (1975), 219–240 | DOI | MR | Zbl

[6] Khurumov Yu. V., “Granichnaya regulyarnost sobstvennykh golomorfnykh otobrazhenii strogo psevdovypuklykh oblastei”, Matem. zametki, 48:6 (1990), 149–150 | MR | Zbl

[7] Kiernan P., “Extensions of holomorphic maps”, Trans. Amer. Math. Soc., 172 (1972), 347–355 | DOI | MR

[8] Klembeck P. F., “Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets”, Indiana Univ. Math. J., 27 (1978), 275–282 | DOI | MR | Zbl

[9] Klimek M., Pluripotential theory, Clarendon Press, Oxford, 1991 | MR | Zbl

[10] Nemirovskii S. Yu., Shafikov R. G., “Uniformizatsiya strogo psevdovypuklykh oblastei, I”, Izv. RAN. Ser. matem., 69:6 (2005), 115–130 | MR | Zbl

[11] Pinchuk S. I., “O sobstvennykh golomorfnykh otobrazheniyakh strogo psevdovypuklykh oblastei”, Sib. matem. zhurn., 15 (1974), 909–917 | Zbl

[12] Pinchuk S. I., “Golomorfnye otobrazheniya v $\mathbb{C}^n$ i problema golomorfnoi ekvivalentnosti”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 9, VINITI, M., 1986, 127–196

[13] Pinchuk S. I., Tsyganov Sh. I., “Gladkost CR-otobrazhenii mezhdu strogo psevdovypuklymi giperpoverkhnostyami”, Izv. AN SSSR. Ser. matem., 53:5 (1989), 1120–1129

[14] Rosay J.-P., “Sur une caractérisation de la boule parmi les domaines de $\mathbb{C}\sp{n}$ par son groupe d'automorphismes”, Ann. Inst. Fourier (Grenoble), 29 (1979), 91–97 | MR | Zbl

[15] Sukhov A. B., “O granichnoi regulyarnosti golomorfnykh otobrazhenii”, Matem. sb., 185:12 (1994), 131–142 | Zbl

[16] Wong B., “Characterization of the unit ball in $\mathbb{C}\sp{n}$ by its automorphism group”, Invent. Math., 41 (1977), 253–257 | DOI | MR | Zbl