Uniformization of strictly pseudoconvex domains.~I
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1189-1202.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that two strictly pseudoconvex Stein domains with real-analytic boundaries have biholomorphic universal coverings provided that their boundaries are locally biholomorphically equivalent. This statement can be regarded as a higher-dimensional analogue of the uniformization theorem.
@article{IM2_2005_69_6_a5,
     author = {S. Yu. Nemirovski and R. G. Shafikov},
     title = {Uniformization of strictly pseudoconvex {domains.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {1189--1202},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a5/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
AU  - R. G. Shafikov
TI  - Uniformization of strictly pseudoconvex domains.~I
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1189
EP  - 1202
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a5/
LA  - en
ID  - IM2_2005_69_6_a5
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%A R. G. Shafikov
%T Uniformization of strictly pseudoconvex domains.~I
%J Izvestiya. Mathematics 
%D 2005
%P 1189-1202
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a5/
%G en
%F IM2_2005_69_6_a5
S. Yu. Nemirovski; R. G. Shafikov. Uniformization of strictly pseudoconvex domains.~I. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1189-1202. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a5/

[1] Alexander H., “Holomorphic mappings from the ball and polydisc”, Math. Ann., 209 (1974), 249–256 | DOI | MR | Zbl

[2] Andreotti A., Frankel T., “The Lefschetz theorem on hyperplane sections”, Ann. of Math., 69:2 (1959), 713–717 | DOI | MR | Zbl

[3] Bott R., “On a theorem of Lefschetz”, Michigan Math. J., 6 (1959), 211–216 | DOI | MR | Zbl

[4] Burns D., Shnider S., “Spherical hypersurfaces in complex manifolds”, Invent. Math., 33 (1976), 223–246 | DOI | MR | Zbl

[5] Chern S. S., Ji S., “On the Riemann mapping theorem”, Ann. of Math. (2), 144:2 (1996), 421–439 | DOI | MR | Zbl

[6] Tom Dieck T., Petrie T., “Contractible affine surfaces of Kodaira dimension one”, Japan. J. Math. (N. S.), 16 (1990), 147–169 | MR | Zbl

[7] Evens L., The cohomology of groups, Oxford Univ. Press, N. Y., 1991 | MR | Zbl

[8] Falbel E., “A simple proof of the Riemann mapping theorem for domains with spherical boundary”, Complex Var. Theory Appl., 48 (2003), 277–282 | MR | Zbl

[9] Fujita R., “Domaines sans point critique intérieur sur l'espace projectif complexe”, J. Math. Soc. Japan, 15 (1963), 443–473 | MR | Zbl

[10] Goldman W., Kapovich M., Leeb B., “Complex hyperbolic manifolds homotopy equivalent to a Riemann surface”, Comm. Anal. Geom., 9 (2001), 61–95 | MR | Zbl

[11] Grauert H., Remmert R., “Konvexität in der komplexen Analysis. Nicht-holomorph-konvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie”, Comment. Math. Helv., 31 (1956), 152–183 | DOI | MR | Zbl

[12] Hill C. D., Shafikov R., “Holomorphic correspondences between CR manifolds”, Indiana Math. J., 54 (2005), 417–442 | DOI | MR

[13] Ivashkovich S. M., “Prodolzhenie lokalno bigolomorfnykh otobrazhenii oblastei v kompleksnoe proektivnoe prostranstvo”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 197–206 | MR | Zbl

[14] Ivashkovich S., “The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds”, Invent. Math., 109 (1992), 47–54 | DOI | MR | Zbl

[15] Kerner H., “Über die Fortsetzung holomorpher Abbildungen”, Arch. Math., 11 (1960), 44–49 | DOI | MR | Zbl

[16] Kerner H., “Überlagerungen und Holomorphiehüllen”, Math. Ann., 144 (1961), 126–134 | DOI | MR | Zbl

[17] Nemirovskii S. Yu., Shafikov R. G., “Uniformizatsiya strogo psevdovypuklykh oblastei, II”, Izv. RAN. Ser. matem., 69:6 (2005), 131–138 | MR | Zbl

[18] Pinchuk S. I., “Ob analiticheskom prodolzhenii golomorfnykh otobrazhenii”, Matem. sb., 98:3 (1975), 416–435 | MR | Zbl

[19] Pinchuk S. I., “O golomorfnykh otobrazheniyakh veschestvenno-analiticheskikh giperpoverkhnostei”, Matem. sb., 105:4 (1978), 574–593 | MR | Zbl

[20] Pinchuk S. I., “Analiticheskoe prodolzhenie golomorfnykh otobrazhenii i problemy golomorfnoi klassifikatsii mnogomernykh oblastei”, Matem. zametki, 33:2 (1983), 301–314 | MR | Zbl

[21] Shafikov R., “Analytic continuation of germs of holomorphic mappings between real hypersurfaces in $\mathbb{C}^n$”, Michigan Math. J., 47 (2000), 133–149 | DOI | MR | Zbl

[22] Shafikov R., “Analytic continuation of holomorphic correspondences and equivalence of domains in $\mathbb{C}^n$”, Invent. Math., 152 (2003), 665–682 | DOI | MR | Zbl

[23] Takeuchi A., “Domaines pseudoconvexes infinis et la metrique riemannienne dans un espace projectif”, J. Math. Soc. Japan, 16 (1964), 159–181 | MR | Zbl

[24] Ueda T., “Pseudoconvex domains over Grassmann manifolds”, J. Math. Kyoto Univ., 20 (1980), 391–394 | MR | Zbl

[25] Vitushkin A. G., Ezhov V. V., Kruzhilin N. G., “Prodolzhenie lokalnykh otobrazhenii psevdovypuklykh poverkhnostei”, DAN SSSR, 270:2 (1983), 271–274 | MR | Zbl

[26] Vitushkin A. G., “Veschestvenno-analiticheskie giperpoverkhnosti v kompleksnykh mnogoobraziyakh”, UMN, 40:2 (1985), 3–31 | MR | Zbl

[27] Webster S., “On the mapping problem for algebraic real hypersurfaces”, Invent. Math., 43 (1977), 53–68 | DOI | MR | Zbl