The topological type of the Fano surface of a~real three-dimensional $M$-cubic
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1137-1167.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the topological type of the real part of the Fano surface that parametrizes the set of real lines a non-singular real $M$-threefold. When studying Fano surfaces, we use the results and constructions in [3] on the intermediate Jacobian of a three-dimensional complex cubic. We begin by computing the topological type of the real part of the Fano surface that parametrizes the set of real lines on a singular real $M$-cubic with a single simple singular point.
@article{IM2_2005_69_6_a3,
     author = {V. A. Krasnov},
     title = {The topological type of the {Fano} surface of a~real three-dimensional $M$-cubic},
     journal = {Izvestiya. Mathematics },
     pages = {1137--1167},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The topological type of the Fano surface of a~real three-dimensional $M$-cubic
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1137
EP  - 1167
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a3/
LA  - en
ID  - IM2_2005_69_6_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The topological type of the Fano surface of a~real three-dimensional $M$-cubic
%J Izvestiya. Mathematics 
%D 2005
%P 1137-1167
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a3/
%G en
%F IM2_2005_69_6_a3
V. A. Krasnov. The topological type of the Fano surface of a~real three-dimensional $M$-cubic. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1137-1167. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a3/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotika integralov, Nauka, M., 1984 | MR

[2] Atiyah M. F., “ $K$-theory and reality”, Quart. J. Math. Oxford, 17:2 (1966), 165–193 | DOI | MR | Zbl

[3] Clemens C. H., Griffits P. A., “The intermediate Jacobian of the cubic threefold”, Ann. Math., 95 (1972), 281–356 | DOI | MR | Zbl

[4] Degtyarev A., Itenberg I., Kharlamov V., Real Enriques surfaces, Lect. Not. Math., 1746, Springer-Verlag, N. Y. , 2000 | MR | Zbl

[5] Degtyarev A. I., Zvonilov V. I., “Zhestkaya izotopicheskaya klassifikatsiya veschestvennykh algebraicheskikh krivykh bistepeni $(3,3)$ na kvadrikakh”, Matem. zametki, 66:6 (1999), 810–815 | MR | Zbl

[6] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[7] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[8] Krasnov V. A., “Veschestvennye algebraicheskie GM-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | MR | Zbl

[9] Krasnov V. A., “O poverkhnosti Fano veschestvennoi trekhmernoi $M$-kubiki”, Matem. zametki, 78:5 (2005), 710–717 | MR | Zbl

[10] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[11] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl