Randomized Hamiltonian Feynman integrals and Shr\"odinger--It\^o stochastic equations
Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1081-1098.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider stochastic Schrödinger equations with two-dimensional white noise. Such equations are used to describe the evolution of an open quantum system undergoing a process of continuous measurement. Representations are obtained for solutions of such equations using a generalization to the stochastic case of the classical construction of Feynman path integrals over trajectories in the phase space.
@article{IM2_2005_69_6_a0,
     author = {J. E. Gough and O. O. Obrezkov and O. G. Smolyanov},
     title = {Randomized {Hamiltonian} {Feynman} integrals and {Shr\"odinger--It\^o} stochastic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1081--1098},
     publisher = {mathdoc},
     volume = {69},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a0/}
}
TY  - JOUR
AU  - J. E. Gough
AU  - O. O. Obrezkov
AU  - O. G. Smolyanov
TI  - Randomized Hamiltonian Feynman integrals and Shr\"odinger--It\^o stochastic equations
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1081
EP  - 1098
VL  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a0/
LA  - en
ID  - IM2_2005_69_6_a0
ER  - 
%0 Journal Article
%A J. E. Gough
%A O. O. Obrezkov
%A O. G. Smolyanov
%T Randomized Hamiltonian Feynman integrals and Shr\"odinger--It\^o stochastic equations
%J Izvestiya. Mathematics 
%D 2005
%P 1081-1098
%V 69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a0/
%G en
%F IM2_2005_69_6_a0
J. E. Gough; O. O. Obrezkov; O. G. Smolyanov. Randomized Hamiltonian Feynman integrals and Shr\"odinger--It\^o stochastic equations. Izvestiya. Mathematics , Tome 69 (2005) no. 6, pp. 1081-1098. http://geodesic.mathdoc.fr/item/IM2_2005_69_6_a0/

[1] Alimov A. L., “O svyazi mezhdu kontinualnymi integralami i differentsialnymi uravneniyami”, TMF, 11:2 (1972), 182–190 | MR

[2] Albeverio S., Smolyanov O. G., “Beskonechnomernye stokhasticheskie uravneniya Shrëdingera–Belavkina”, UMN, 52:4 (1997), 199–201 | MR

[3] Belavkin V. P., Smolyanov O. G., “Integral Feinmana po traektoriyam, sootvetstvuyuschii stokhasticheskomu uravneniyu Shrëdingera”, Dokl. RAN, 360:5 (1998), 589–593 | MR | Zbl

[4] Gof Dzh., “Nekommutativnye markovskie approksimatsii”, Dokl. RAN, 379:6 (2001), 730–734 | MR

[5] Gof Dzh., “Spektralnoe razlozhenie statsionarnykh v shirokom smysle kvantovykh sluchainykh protsessov”, Dokl. RAN, 397:5 (2004), 602–605 | MR

[6] Evgrafov M. A., “Ob odnoi formule dlya predstavleniya resheniya differentsialnogo uravneniya kontinualnym integralom”, DAN SSSR, 191:5 (1970), 979–982 | MR | Zbl

[7] Maslov V. P., Kompleksnye tsepi Markova i integral Feinmana dlya nelineinykh sistem, Nauka, M., 1976 | MR

[8] Smolyanov O. G., Trumen A., “Uravneniya Shrëdingera–Belavkina i assotsiirovannye s nimi uravneniya Kolmogorova i Lindblada”, TMF, 120:2 (1999), 193–207 | MR | Zbl

[9] Smolyanov O. G., Shavgulidze E. T., Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR

[10] Uglanov A. V., “Ob odnoi konstruktsii feinmanovskogo integrala”, DAN SSSR, 243:6 (1978), 1406–1409 | MR | Zbl

[11] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968

[12] Accardi L., Lu Y. G., Volovich I., Quantum theory and its stochastic limit, Springer-Verlag, Berlin, 2002 | MR | Zbl

[13] Albeverio S., Guatteri G., Mazzucchi S., “A representation of the Belavkin equation via phase space Feynman path integrals”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 7:4 (2004), 507–526 | DOI | MR | Zbl

[14] Albeverio S., Hoegh-Krohn R., Mathematical Theory of Feynman Integrals, Lecture Notes in Math., 523, Springer-Verlag, Berlin, 1976 | MR | Zbl

[15] Albeverio S., Kolokol'tsov V. N., Smolyanov O. G., “Représentation des solution de l'equation de Belavkin pour la mesure quantique par une version rigoureuse de la formule d'intégration fonctionelle de Menski”, C. R. Acad. Sci. Paris, 323:1 (1996), 661–664 | MR | Zbl

[16] Albeverio S., Kolokol'tsov V. N., Smolyanov O. G., “Quantum Restrictions for Continuous Observation of an Oscillator”, Rev. Math. Phys., 9:6 (1997), 907–920 | DOI | MR | Zbl

[17] Belavkin V. P., “Nondemolition Measurements, Nonlinear Filtering and Dynamic Programming of Quantum Stochastic Processes”, Proc. Bellman Continuous Workshop (Sophia-Antinopolis), Lect. Not. in Computer and Inform. Sciences, 121, 1988, 245–265 | MR

[18] Belavkin V. P., “A New Wave Equation For a Continuous Nondemolition Measurement”, Phys. Lett. A, 140 (1989), 355–358 | DOI | MR

[19] Chernoff R., “Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators”, Mem. Amer. Math. Soc., 140 (1974), 1–121 | MR

[20] Davies E. B., Quantum Theory of Open Systems, Academic Press, London, 1976 | MR

[21] Diosi L., “Continuous Quantum Measurement and Itô Formalism”, Phys. Lett. A, 129 (1988), 419–423 | DOI | MR

[22] Exner P., Open Quantum Systems and Feynman Integrals, D. Reidel Publishing company, Dordrecht–Boston–Lancaster, 1985 | MR | Zbl

[23] Feynman R. P., “Space-time Approach to Nonrelativistic Quantum Mechanics”, Rev. Mod. Phys., 20 (1948), 367–387 | DOI | MR

[24] Feynman R. P., “An Operation Calculus Having Application in Quantum Electrodynamics”, Phys. Rev., 84 (1951), 108–128 | DOI | MR | Zbl

[25] Ghirardi G. C., Rimini A., Weber T., “Unified dynamics for microscopic and macroscopic systems”, Phys. Rev. D, 34 (1986), 471 | DOI | MR

[26] Hudson R. L., Parthasarathy K. R., “Quantum Itô's Formula and Stochastic Evolutions”, Commun. Math. Phys., 93 (1984), 301–323 | DOI | MR | Zbl

[27] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes, North Holland, Kodansha, 1981 | MR | Zbl

[28] Levy P., Theorie de l'Addition des Variables Aleatoires, Gauthier-Villars, Paris, 1937 | Zbl

[29] McKean H., Stochastic Integrals, Acad. Press, N. Y., 1969 | MR | Zbl

[30] Mensky M. B., “Quantum Restrictions for Continuous Observation of an Oscillator”, Phys. Rev. D, 20 (1979), 384–387 | DOI

[31] Mensky M. B., Continuous Quantum Measurements and Path Integrals, IOP Publishing, Bristol, 1993 | MR

[32] Obrezkov O. O., “Stochastic Schrödinger Equation with Two-dimensional White Noise”, Russian J. of Math. Physics, 9:4 (2002), 446–454 | MR | Zbl

[33] Smolyanov O. G., Shavgulidze E. T., “Some Properties and the Applications of Feynman Measures in the Phase Space”, Proc. of the Fourth Vilnius Conference, V. 2, 1987, 595–608 | MR | Zbl

[34] Smolyanov O. G., Tokarev A. G., Truman A., “Hamiltonian Feynman Path Integrals via the Chernoff Formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[35] Smolyanov O. G., von Weizsäcker H., Wittich O., “Brownian Motion on a Manifold as Limit of Stepwise Conditioned Standard Brownian Motions”, Canadian Math. Society Conference Proceedings, 29, 2000, 589–602 | MR | Zbl

[36] Smolyanov O. G., von Weizsäcker H., Wittich O., Chernoff's Theorem and the Construction of Semigroups, Preprint No 01-11, Institute of Biomathematics and Biometrics, GSF-National Research Center for Environment and Health, Neuherberg, Germany, 2001 | MR