Distribution of the points of a~design on the sphere
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1061-1079.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine the size of spherical caps with centres at the points of a design that cover the whole sphere in Euclidean space with a given multiplicity. By projecting $q$-designs on one-dimensional subspaces, we obtain the nodes of a Chebyshev-type quadrature formula of the same precision $q$. For large values of $q$ we establish that the points of a minimal $q$-design are uniformly distributed on the sphere. We construct a weighted cubature formula on the sphere with the minimum number of nodes.
@article{IM2_2005_69_5_a7,
     author = {V. A. Yudin},
     title = {Distribution of the points of a~design on the sphere},
     journal = {Izvestiya. Mathematics },
     pages = {1061--1079},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a7/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - Distribution of the points of a~design on the sphere
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1061
EP  - 1079
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a7/
LA  - en
ID  - IM2_2005_69_5_a7
ER  - 
%0 Journal Article
%A V. A. Yudin
%T Distribution of the points of a~design on the sphere
%J Izvestiya. Mathematics 
%D 2005
%P 1061-1079
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a7/
%G en
%F IM2_2005_69_5_a7
V. A. Yudin. Distribution of the points of a~design on the sphere. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1061-1079. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a7/

[1] Chebyshev P. L., “O kvadraturakh”, Poln. sobr. soch., T. III, Izd-vo AN SSSR, M., 1948, 49–62

[2] Kuzmin R. O., “O raspredelenii kornei polinomov, svyazannykh s kvadraturami Chebysheva”, Izv. AN SSSR. Ser. matem., 2:4 (1938), 427–444

[3] Bernshtein S. N., Poln. sobr. soch., T. II, Izd-vo AN SSSR, M., 1952–1954

[4] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatgiz, M., 1959 | MR

[5] Meir A., Sharma A., “A variation on the Tchebicheff quadrature problem”, Illinois J. Math., 11 (1967), 535–546 | MR | Zbl

[6] Rabau P., Bajnok B., “Bounds for the Number of nodes in Chebyshev Type Quadrature Formulas”, J. Approx. Theory, 67 (1991), 199–214 | DOI | MR | Zbl

[7] Delsarte P., Goethals G. M., Seidel J. J., “Spherical codes and designs”, Geom. Dedic., 6 (1979), 363–388 | MR

[8] Wagner G., “On averaging sets”, Monats. Math., 111 (1991), 69–78 | DOI | MR | Zbl

[9] Bajnok B., “Construction of spherical $t$-designs”, Geom. Dedic., 43 (1992), 167–179 | DOI | MR | Zbl

[10] Korevaar J., Meyers J. L. H., “Chebyshev-type quadrature on multidimensional domains”, J. Approx. Theory, 79 (1994), 144–164 | DOI | MR | Zbl

[11] Korevaar J., The problem of Chebyshev quadrature on the sphere, Preprint: Discussion paper, September 4, 2000, p. 1–17

[12] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[13] Fazekas G., Levenstein V. I., “On Upper Bounds for Code Distance and Covering Radius of Designs in Polynomial Metric Spaces”, J. Combin. Theory. Ser. A, 70 (1995), 267–288 | DOI | MR | Zbl

[14] Yudin V. A., “Pokrytiya sfery i ekstremalnye svoistva ortogonalnykh mnogochlenov”, Diskr. matematika, 7:3 (1995), 81–88 | MR | Zbl

[15] Reimer M., “Hyperinterpolation on the Sphere at the Minimal Projestion Order”, J. Approx. Theory, 104 (2000), 272–286 | DOI | MR | Zbl

[16] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[17] Reznick B., “Some Constructions of Spherical $5$-designes”, Linear Algebra and its Applications, 226/228 (1995), 163–196 | DOI | MR | Zbl

[18] Yuan Xu, “Orthogonal polynomials and cubature formulae on spheres and on balls”, SIAM J. Math. Anal., 29 (1998), 779–793 | DOI | MR | Zbl

[19] Pawelke S., “Über die Approximationsordnung bei Kugelfunktionen und algebraischen Polynomen”, Tohoku Math. J., 24:3 (1972), 473–486 | DOI | MR | Zbl

[20] Lizorkin P. I., Nikol'ski\v i S. M., “A theorem concerning approximation on the sphere”, Anal. Math., 9 (1983), 207–221 | DOI | MR | Zbl

[21] Rustamov Kh. P., “O priblizhenii funktsii na sfere”, Izv. RAN. Ser. matem., 57:5 (1993), 127–148 | MR | Zbl

[22] Babenko A. G., “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2$ funktsii na mnogomernoi sfere”, Matem. zametki, 60:3 (1996), 333–355 | MR | Zbl

[23] Markov A. A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948 | MR

[24] Reimer M., “Spherical Polynomial Approximations: A Survey”, Advances in Multivariate Approximation, eds. W. Haussmann, K. Jetter, M. Reimer, WILEY-VCH, Berlin, 1999, 231–252 | MR | Zbl

[25] Yudin V. A., “Nizhnie otsenki dlya sfericheskikh dizainov”, Izv. RAN. Ser. matem., 61:3 (1997), 211–223 | MR

[26] Levenstein V. I., “Universal bounds for codes and designs”, Handbook of Coding Theory, eds. V. S. Pless, W. C. Huffman, R. A. Brualdi, North-Holland, Amsterdam, 1998, 499–648 | MR

[27] Andreev N. N., “Minimalnyi dizain 11-go poryadka na trekhmernoi sfere”, Matem. zametki, 67:4 (2000), 489–497 | Zbl

[28] Yuan Xu, “Lower bound for the number of nodes of cubature formulae on the unit ball”, J. of Complexity, 19 (2003), 392–402 | DOI | MR | Zbl