Distribution of the points of a~design on the sphere
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1061-1079
Voir la notice de l'article provenant de la source Math-Net.Ru
We determine the size of spherical caps with centres at the points of a design that cover the whole sphere in Euclidean space with a given multiplicity. By projecting $q$-designs on one-dimensional subspaces, we obtain the nodes of a Chebyshev-type quadrature formula of the same precision $q$. For large values of $q$ we establish that the points of a minimal
$q$-design are uniformly distributed on the sphere. We construct a weighted cubature formula on the sphere with the minimum number of nodes.
@article{IM2_2005_69_5_a7,
author = {V. A. Yudin},
title = {Distribution of the points of a~design on the sphere},
journal = {Izvestiya. Mathematics },
pages = {1061--1079},
publisher = {mathdoc},
volume = {69},
number = {5},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a7/}
}
V. A. Yudin. Distribution of the points of a~design on the sphere. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1061-1079. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a7/