Homogenization of variational inequalities for non-linear diffusion problems in perforated domains
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1035-1059.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the homogenization of non-linear diffusion problems with various boundary conditions in periodically perforated domains. These problems are stated as variational inequalities defined by non-linear strictly monotone operators of second order with periodic rapidly oscillating coefficients. We establish the relevant convergence of solutions of the problems to solutions of two-scale and macroscale limiting variational inequalities. We give methods for deriving such limiting variational inequalities. In the case of potential operators, we establish relations between the limiting variational inequalities obtained and the two-scale and macroscale constrained minimization problems.
@article{IM2_2005_69_5_a6,
     author = {G. V. Sandrakov},
     title = {Homogenization of variational inequalities for non-linear diffusion problems in perforated domains},
     journal = {Izvestiya. Mathematics },
     pages = {1035--1059},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a6/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Homogenization of variational inequalities for non-linear diffusion problems in perforated domains
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 1035
EP  - 1059
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a6/
LA  - en
ID  - IM2_2005_69_5_a6
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Homogenization of variational inequalities for non-linear diffusion problems in perforated domains
%J Izvestiya. Mathematics 
%D 2005
%P 1035-1059
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a6/
%G en
%F IM2_2005_69_5_a6
G. V. Sandrakov. Homogenization of variational inequalities for non-linear diffusion problems in perforated domains. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1035-1059. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a6/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[2] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992

[3] Allaire G., Murat F., Homogenization of the Neuman problem with non-isolated holes, Universite Pierre et Marie Curie, Paris, 1992

[4] Hedberg L. I., “Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem”, Acta Math., 147 (1981), 237–264 | DOI | MR | Zbl

[5] Mitrea M., Taylor M., “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl

[6] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | MR

[7] Ding Z., “A proof of the trace theorem of Sobolev spaces on Lipschitz domains”, Proc. Amer. Math. Soc., 124:2 (1996), 591–600 | DOI | MR | Zbl

[8] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[9] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[10] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[11] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[12] Allaire G., Briane M., “Multiscale convergence and reiterated homogenization”, Proc. Royal Soc. Edinburgh, 126A (1996), 297–342 | MR

[13] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[14] Braides A., Defranceschi A., Homogenization of multiple integrals, Oxford University Press, N. Y. , 1998 | MR | Zbl

[15] Pastukhova S. E., “Usrednenie smeshannoi zadachi s usloviem Sinorini dlya ellipticheskogo operatora v perforirovannoi oblasti”, Matem. sb., 192:2 (2001), 87–102 | MR | Zbl

[16] Amosov A. A., “O slaboi skhodimosti odnogo klassa bystroostsilliruyuschikh funktsii”, Matem. zametki, 62:1 (1997), 145–150 | MR | Zbl

[17] Zhikov V. V., “On the homogenization of nonlinear variational problems in perforated domains”, Russian J. Math. Physics, 2:3 (1994), 393–408 | MR | Zbl

[18] Zhikov V. V., Rychago M. E., “Usrednenie nelineinykh ellipticheskikh uravnenii vtorogo poryadka v perforirovannykh oblastyakh”, Izv. RAN. Ser. matem., 61:1 (1997), 69–88 | MR | Zbl

[19] Sandrakov G. V., “Osrednenie variatsionnykh neravenstv dlya zadach s regulyarnym prepyatstviem”, Dokl. RAN, 397:2 (2004), 170–173 | MR

[20] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[21] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[22] Bensoussan A., Lions J.-L., Papanicolau G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978

[23] Lions J.-L., Sanchez-Palencia E., “Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux”, J. Math. Pures Appl., 60 (1981), 341–360 | MR | Zbl

[24] Attouch H., Picard C., “Variational inequalities with varying obstacles: the general form of the limit problem”, J. Func. Anal., 50 (1983), 329–386 | DOI | MR

[25] Dal Maso G., Trebeschi P., “$\Gamma$-limit of periodic obstacles”, Acta Appl. Math., 65 (2001), 207–215 | DOI | MR | Zbl

[26] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[27] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[28] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR