Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_5_a6, author = {G. V. Sandrakov}, title = {Homogenization of variational inequalities for non-linear diffusion problems in perforated domains}, journal = {Izvestiya. Mathematics }, pages = {1035--1059}, publisher = {mathdoc}, volume = {69}, number = {5}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a6/} }
TY - JOUR AU - G. V. Sandrakov TI - Homogenization of variational inequalities for non-linear diffusion problems in perforated domains JO - Izvestiya. Mathematics PY - 2005 SP - 1035 EP - 1059 VL - 69 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a6/ LA - en ID - IM2_2005_69_5_a6 ER -
G. V. Sandrakov. Homogenization of variational inequalities for non-linear diffusion problems in perforated domains. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 1035-1059. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a6/
[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[2] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992
[3] Allaire G., Murat F., Homogenization of the Neuman problem with non-isolated holes, Universite Pierre et Marie Curie, Paris, 1992
[4] Hedberg L. I., “Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem”, Acta Math., 147 (1981), 237–264 | DOI | MR | Zbl
[5] Mitrea M., Taylor M., “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl
[6] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | MR
[7] Ding Z., “A proof of the trace theorem of Sobolev spaces on Lipschitz domains”, Proc. Amer. Math. Soc., 124:2 (1996), 591–600 | DOI | MR | Zbl
[8] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[9] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl
[10] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl
[11] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[12] Allaire G., Briane M., “Multiscale convergence and reiterated homogenization”, Proc. Royal Soc. Edinburgh, 126A (1996), 297–342 | MR
[13] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[14] Braides A., Defranceschi A., Homogenization of multiple integrals, Oxford University Press, N. Y. , 1998 | MR | Zbl
[15] Pastukhova S. E., “Usrednenie smeshannoi zadachi s usloviem Sinorini dlya ellipticheskogo operatora v perforirovannoi oblasti”, Matem. sb., 192:2 (2001), 87–102 | MR | Zbl
[16] Amosov A. A., “O slaboi skhodimosti odnogo klassa bystroostsilliruyuschikh funktsii”, Matem. zametki, 62:1 (1997), 145–150 | MR | Zbl
[17] Zhikov V. V., “On the homogenization of nonlinear variational problems in perforated domains”, Russian J. Math. Physics, 2:3 (1994), 393–408 | MR | Zbl
[18] Zhikov V. V., Rychago M. E., “Usrednenie nelineinykh ellipticheskikh uravnenii vtorogo poryadka v perforirovannykh oblastyakh”, Izv. RAN. Ser. matem., 61:1 (1997), 69–88 | MR | Zbl
[19] Sandrakov G. V., “Osrednenie variatsionnykh neravenstv dlya zadach s regulyarnym prepyatstviem”, Dokl. RAN, 397:2 (2004), 170–173 | MR
[20] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR
[21] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[22] Bensoussan A., Lions J.-L., Papanicolau G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978
[23] Lions J.-L., Sanchez-Palencia E., “Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux”, J. Math. Pures Appl., 60 (1981), 341–360 | MR | Zbl
[24] Attouch H., Picard C., “Variational inequalities with varying obstacles: the general form of the limit problem”, J. Func. Anal., 50 (1983), 329–386 | DOI | MR
[25] Dal Maso G., Trebeschi P., “$\Gamma$-limit of periodic obstacles”, Acta Appl. Math., 65 (2001), 207–215 | DOI | MR | Zbl
[26] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[27] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR
[28] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR