Pseudodifferential operators on ultrametric spaces and ultrametric wavelets
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 989-1003

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a wavelet analysis and spectral theory of pseudodifferential operators on general ultrametric spaces. Operators generalizing the Vladimirov operator of $p$-adic fractional differentiation are introduced. We construct a family of ultrametric wavelet bases in spaces of square-integrable complex-valued functions for a wide family of ultrametric spaces. We show that the pseudodifferential operators introduced are diagonal in these wavelet bases and compute the corresponding eigenvalues.
@article{IM2_2005_69_5_a3,
     author = {S. V. Kozyrev and A. Yu. Khrennikov},
     title = {Pseudodifferential operators on ultrametric spaces and ultrametric wavelets},
     journal = {Izvestiya. Mathematics },
     pages = {989--1003},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/}
}
TY  - JOUR
AU  - S. V. Kozyrev
AU  - A. Yu. Khrennikov
TI  - Pseudodifferential operators on ultrametric spaces and ultrametric wavelets
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 989
EP  - 1003
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/
LA  - en
ID  - IM2_2005_69_5_a3
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%A A. Yu. Khrennikov
%T Pseudodifferential operators on ultrametric spaces and ultrametric wavelets
%J Izvestiya. Mathematics 
%D 2005
%P 989-1003
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/
%G en
%F IM2_2005_69_5_a3
S. V. Kozyrev; A. Yu. Khrennikov. Pseudodifferential operators on ultrametric spaces and ultrametric wavelets. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 989-1003. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/