Pseudodifferential operators on ultrametric spaces and ultrametric wavelets
Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 989-1003.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a wavelet analysis and spectral theory of pseudodifferential operators on general ultrametric spaces. Operators generalizing the Vladimirov operator of $p$-adic fractional differentiation are introduced. We construct a family of ultrametric wavelet bases in spaces of square-integrable complex-valued functions for a wide family of ultrametric spaces. We show that the pseudodifferential operators introduced are diagonal in these wavelet bases and compute the corresponding eigenvalues.
@article{IM2_2005_69_5_a3,
     author = {S. V. Kozyrev and A. Yu. Khrennikov},
     title = {Pseudodifferential operators on ultrametric spaces and ultrametric wavelets},
     journal = {Izvestiya. Mathematics },
     pages = {989--1003},
     publisher = {mathdoc},
     volume = {69},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/}
}
TY  - JOUR
AU  - S. V. Kozyrev
AU  - A. Yu. Khrennikov
TI  - Pseudodifferential operators on ultrametric spaces and ultrametric wavelets
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 989
EP  - 1003
VL  - 69
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/
LA  - en
ID  - IM2_2005_69_5_a3
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%A A. Yu. Khrennikov
%T Pseudodifferential operators on ultrametric spaces and ultrametric wavelets
%J Izvestiya. Mathematics 
%D 2005
%P 989-1003
%V 69
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/
%G en
%F IM2_2005_69_5_a3
S. V. Kozyrev; A. Yu. Khrennikov. Pseudodifferential operators on ultrametric spaces and ultrametric wavelets. Izvestiya. Mathematics , Tome 69 (2005) no. 5, pp. 989-1003. http://geodesic.mathdoc.fr/item/IM2_2005_69_5_a3/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Vladimirov V. S., “O spektre nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2:6 (1990), 107–124 | MR

[3] Vladimirov V. S., “O spektralnykh svoistvakh $p$-adicheskikh psevdodifferentsialnykh operatorov tipa Shrëdingera”, Izv. RAN. Ser. matem., 56:4 (1992), 770–789 | MR | Zbl

[4] Khrennikov A. Yu., “Fundamentalnye resheniya nad polem $p$-adicheskikh chisel”, Algebra i analiz, 4:3 (1992), 248–266 | MR | Zbl

[5] Albeverio S., Karwowosky W., “A random walk on $p$-adic numbers”, Stochastic Process–Physics and Geometry, V. II, eds. S. Albeverio, U. Cattaneo, D. Merlini, World Scientific, Singapore, 1995, 61–74 | Zbl

[6] Kochubei A. N., Pseudo–Differential Equations and Stochastics over Non–Archimedean Fields, Marcel Dekker, N. Y. , 2001 | MR | Zbl

[7] Kochubei A. N., “Fundamentalnye resheniya psevdodifferentsialnykh uravnenii, svyazannykh s $p$-adicheskimi kvadratichnymi formami”, Izv. RAN. Ser. matem., 62:6 (1998), 103–124 | MR | Zbl

[8] Bruhat F., Tits J., “Groupes reductifs sur un corps local”, Inst. Hautes Etudes Sci. Publ. Math., 41 (1972), 5–251 | DOI | MR | Zbl

[9] Bruhat F., Tits J., “Groupes reductifs sur un corps local. II: Schemas en groupes. Existence d'une donnee radicielle valuee”, Inst. Hautes Etudes Sci. Publ. Math., 60 (1984), 197–376 | DOI | MR

[10] Serre J. P., Trees, Springer-Verlag, N. Y. –Berlin, 1980 | MR | Zbl

[11] Lemin A. J., “The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like and real graduated lattices LAT”, Algebra universalis, 50:1 (2003), 35–49 | DOI | MR | Zbl

[12] Cohen J. M., Colonna F., Singman D., “Distributions and measures on the boundary of a tree”, J. Math. Anal. Appl., 293 (2004), 89–107 | DOI | MR | Zbl

[13] Choucroun F., “Arbres, espaces ultrametriques et bases de structure uniforme”, Geom. Dedicata, 53 (1994), 69–74 | DOI | MR | Zbl

[14] Kozyrev S. V., “Analiz vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 | MR | Zbl

[15] Daubechies I., Ten Lectures on Wavelets, CBMS Lect. Not. Ser., SIAM, Philadelphia, 1991 | MR

[16] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | MR | Zbl

[17] Benedetto R. L., Examples of wavelets for local fields, arXiv: math.CA/0312038 | MR

[18] Kozyrev S. V., “ $p$-adicheskie psevdodifferentsialnye operatory i $p$–adicheskie vspleski”, TMF, 138:3 (2004), 383–394 | MR

[19] Volovich I. V., “$p$-Adic String”, Class. Quantum Gravity, 4 (1987), L83–L87 | DOI | MR

[20] Aref'eva I. Ya., Dragovic B., Frampton P., Volovich I. V., “Wave function of the universe and $p$-adic gravity”, Mod. Phys. Lett. A, 6 (1991), 4341–4358 | MR

[21] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl

[22] Khrennikov A., Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publ., Dordrecht, 1997 | MR | Zbl

[23] Khrennikov A., Classical and quantum mental models and Freud's theory of unconscious mind, Växjö University press, Växjö, 2002

[24] Khrennikov A. Yu., Nearkhimedov analiz i ego prilozheniya, Nauka, M., 2003 | MR | Zbl

[25] Khrennikov A., “$p$-Adic discrete dynamical systems and their applications in physics and cognitive sciences”, Russian J. Math. Phys., 11:1 (2004), 45–70 | MR | Zbl

[26] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of spontaneous breaking of the replica symmetry”, J. Phys. A: Math. Gen., 32 (1999), 8785–8791 | DOI | MR | Zbl

[27] Parisi G., Sourlas N., “$p$-Adic numbers and replica symmetry breaking”, European Phys. J. B, 14 (2000), 535–542 | DOI | MR

[28] Carlucci D. M., De Dominicis C., “On the replica Fourier transform”, Comptes Rendus Ac. Sci. Ser. IIB. Mech. Phys. Chem. Astr., 325 (1997), 527 | Zbl

[29] De Dominicis C., Carlucci D. M., Temesvari T., “Replica Fourier transform on ultrametric trees and block-diagonalizing multireplica matrices”, J. Phys. I France, 7 (1997), 105–115 | DOI | MR

[30] Ogielski A. T., Stein D. L., “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55:15 (1985), 1634–1637 | DOI | MR

[31] Schreckenberg M., “Long run diffusion on ultrametric spaces”, Zeitschrift für Physik B – Condensed Matter, 60 (1985), 483–488 | DOI

[32] Huberman B. A., Kerszberg M., “Ultradiffusion: the relaxation on hierarchical systems”, J. Phys. A: Math. Gen., 18 (1985), L331–L336 | DOI | MR

[33] Avetisov V. A., Bikulov A. H., Kozyrev S. V., Osipov V. A., “$p$-Adic Models of Ultrametric Diffusion Constrained by Hierarchical Energy Landscapes”, J. Phys. A: Math. Gen., 35 (2002), 177–189 | DOI | MR | Zbl

[34] Mezard M., Parisi G., Virasoro M., Spin-Glass Theory and Beyond, World Scientific, Singapore, 1987 | MR | Zbl

[35] Rammal R., Toulouse G., Virasoro M. A., “Ultrametricity for physicists”, Rev. Mod. Phys., 58 (1986), 765–788 | DOI | MR