On~the structure of~faces of~three-dimensional polytopes
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 847-864.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Euclidean three-space, we consider two-dimensional polyhedra that are homeomorphic to closed surfaces. The structure of an arbitrary face of such a polyhedron is studied in detail. In particular, we prove the following main theorem. If a two-dimensional polyhedron lies in Euclidean three-space and is isometric to the surface of a convex three-dimensional polytope, then all the faces of the polyhedron are convex polygons.
@article{IM2_2005_69_4_a8,
     author = {M. I. Shtogrin},
     title = {On~the structure of~faces of~three-dimensional polytopes},
     journal = {Izvestiya. Mathematics },
     pages = {847--864},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a8/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - On~the structure of~faces of~three-dimensional polytopes
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 847
EP  - 864
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a8/
LA  - en
ID  - IM2_2005_69_4_a8
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T On~the structure of~faces of~three-dimensional polytopes
%J Izvestiya. Mathematics 
%D 2005
%P 847-864
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a8/
%G en
%F IM2_2005_69_4_a8
M. I. Shtogrin. On~the structure of~faces of~three-dimensional polytopes. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 847-864. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a8/

[1] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR

[2] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhizdat, M.–L., 1950 | MR

[3] Matematicheskaya entsiklopediya, T. 3, Izd-vo “Sovetskaya entsiklopediya”, M., 1982

[4] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[5] Shtogrin M. I., “Polozhitelnost krivizny i vypuklost granei”, Diskretnaya geometriya, Mezhdunarodnaya konferentsiya, posvyaschennaya stoletiyu L. V. Keldysh. Tez. dokl. (Moskva, 24–28 avgusta 2004 g.), MIAN, M., 2004, 39–40

[6] Olovyanishnikov S. P., “Obobschenie teoremy Koshi o vypuklykh mnogogrannikakh”, Matem. sb., 18:3 (1946), 441–446

[7] Cauchy A., “Sur les polygones et polyedres, Second Memoire”, J. Ecole Polytechnique, 9 (1813), 87–98