Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 805-846.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider vibrations of a membrane which contains many “light” concentrated masses on the boundary. We study the asymptotic behaviour of the frequencies of eigenvibrations of the membrane as the small parameter (which characterizes the diameter and density of the concentrated masses) tends to zero. We construct asymptotic expansions of eigenelements of the corresponding problems and carefully justify these expansions.
@article{IM2_2005_69_4_a7,
     author = {G. A. Chechkin},
     title = {Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. {Two-dimensional} case},
     journal = {Izvestiya. Mathematics },
     pages = {805--846},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/}
}
TY  - JOUR
AU  - G. A. Chechkin
TI  - Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 805
EP  - 846
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/
LA  - en
ID  - IM2_2005_69_4_a7
ER  - 
%0 Journal Article
%A G. A. Chechkin
%T Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
%J Izvestiya. Mathematics 
%D 2005
%P 805-846
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/
%G en
%F IM2_2005_69_4_a7
G. A. Chechkin. Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 805-846. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/

[1] Krylov A. N., “O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh”, Izv. Nikolaevskoi morskoi akademii, 1913, no. 2, 325–348

[2] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[3] Sánchez-Palencia E., “Perturbation of eigenvalues in thermoelasticity and vibration of system with concentrated masses”, Trends and Application of pure Math. to Mechanics, Lecture notes in Physics, 195, Springer-Verlag, Berlin, 1984, 346–368 | MR

[4] Oleinik O. A., Lektsii po uravneniyam s chastnymi proizvodnymi, Izd-vo MGU, M., 1976 | MR

[5] Oleinik O. A., “O sobstvennykh kolebaniyakh tel s kontsentrirovannymi massami”, Sovremennye problemy prikladnoi matematiki i matematicheskoi fiziki, Nauka, M., 1988, 101–128 | MR

[6] Oleinik O. A., “O spektrakh nekotorykh singulyarno vozmuschennykh operatorov”, UMN, 42:3 (1987), 221–222

[7] Oleinik O. A., “Homogenization problems in elasticity. Spectrum of singularly perturbed operators”, Non-classical continuum mechanics, Lecture Notes series, 122, Cambridge Univ. Press, Cambridge, 1987, 188–205 | MR

[8] Oleinik O. A., “O chastotakh sobstvennykh kolebanii tel s kontsentrirovannymi massami”, Funktsionalnye i chislennye metody matematicheskoi fiziki, Nauk. dumka, Kiev, 1988, 165–171 | MR

[9] Golovatyi Yu. D., Spektralnye svoistva kolebatelnykh sistem s prisoedinennymi massami, Dis. ...kand. fiz.-mat. nauk, MGU, M., 1988

[10] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., Soboleva T. S., “O sobstvennykh kolebaniyakh struny s prisoedinennoi massoi”, Sib. matem. zhurn., 29:5 (1988), 71–91 | MR | Zbl

[11] Oleinik O. A., Soboleva T. S., “O sobstvennykh kolebaniyakh neodnorodnoi struny s konechnym chislom prisoedinennykh mass”, UMN, 43:4 (1988), 187–188 | MR

[12] Golovatyi Yu. D., “O sobstvennykh kolebaniyakh i sobstvennykh chastotakh uprugogo sterzhnya s prisoedinennoi massoi”, UMN, 43:4 (1988), 173–174 | MR

[13] Golovatyi Yu. D., “O sobstvennykh kolebaniyakh i sobstvennykh chastotakh zakreplennoi plastinki s prisoedinennoi massoi”, UMN, 43:5 (1988), 185–186 | MR | Zbl

[14] Nazarov S. A., “Concentrated masses problems for a spatial elastic body”, C. R. Acad. Sci. Paris. Ser. I. Math., 316:6 (1993), 627–632 | MR | Zbl

[15] Argatov I. I., Nazarov S. A., “Junction problem of shashlik (skewer) type”, C. R. Acad. Sci. Paris Ser. I. Math., 316:12 (1993), 1329–1334 | MR | Zbl

[16] Nazarov S. A., “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer., 27:6 (1993), 777–799 | MR | Zbl

[17] Golovatyi Yu. D., “Spektralnye svoistva kolebatelnykh sistem s prisoedinennymi massami: effekt lokalnykh kolebanii”, Tr. MMO, 54, URSS, M., 1992, 29–72 | Zbl

[18] Golovatyi Yu. D., “Spektralnaya zadacha Neimana dlya operatora Laplasa s singulyarno vozmuschennoi plotnostyu”, UMN, 45:4 (1990), 147–148 | MR | Zbl

[19] Nazarov S. A., “Ob odnoi zadache Sanches-Palensiya s kraevymi usloviyami Neimana”, Izv. vuzov. Matematika, 1989, no. 11, 60–66 | Zbl

[20] Rakhmanov N. U., O sobstvennykh kolebaniyakh sistem s kontsentrirovannymi massami, Dis. ...kand. fiz.-mat. nauk, MGU, M., 1991

[21] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptotika sobstvennykh znachenii i sobstvennykh funktsii v zadachakh o kolebaniyakh sredy s singulyarnym vozmuscheniem plotnosti”, UMN, 43:5 (1988), 189–190 | MR | Zbl

[22] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptoticheskie razlozheniya sobstvennykh znachenii i sobstvennykh funktsii zadach o kolebaniyakh sredy s kontsentrirovannymi vozmuscheniyami”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 192 (1990), 42–60 | MR

[23] Sánchez-Palencia E., Tchatat H., “Vibration de systèmes elastiques avec masses concentrées”, Rendiconti del Seminario matematico della Universita e politecnico di Torino, 42:3 (1984), 43–63 | MR | Zbl

[24] Golovaty Y. D., Lavrenyuk A. S., “Asymptotic expansions of local eigenvibrations for plate with density perturbed in neighbourhood of one-dimensional manifold”, Mat. Stud., 13:1 (2000), 51–62 | MR | Zbl

[25] Leal C., Sanchez-Hubert J., “Perturbation of the Eigenvalue of a Membrane with a Concentrated Mass”, Quarterly Appl. Math., XLVII:1 (1989), 93–103 | MR

[26] Lobo M., Pérez E., “Asymptotic Behavior of the Vibrations of a Body Having Many Concentrated Masses Near the Boundary”, C. R. Acad. Sci. Paris. Série II, 314 (1992), 13–18 | Zbl

[27] Lobo M., Pérez E., “On Vibrations of a Body With Many Concentrated Masses Near the Boundary”, Math. Models and Methods in Appl. Sci., 3:2 (1993), 249–273 | DOI | MR | Zbl

[28] Lobo M., Pérez E., “Vibrations of a Body With Many Concentrated Masses Near the Boundary: High Frequency Vibrations”, Spectral Analysis of Complex Structures, Hermann, Paris, 1995, 85–101 | MR | Zbl

[29] Lobo M., Pérez E., “Vibrations of a Membrane With Many Concentrated Masses Near the Boundary”, Math. Models and Methods in Appl. Sci., 5:5 (1995), 565–585 | DOI | MR | Zbl

[30] Lobo M., Pérez E., “High Frequency Vibrations in a Stiff Problem”, Math. Models and Methods in Appl. Sci., 7:2 (1997), 291–311 | DOI | MR | Zbl

[31] Lobo M., Pérez E., “A Skin Effect for Systems with Many Concentrated Masses”, C. R. Acad. Sci. Paris. Série IIb, 327 (1999), 771–776 | Zbl

[32] Gómez D., Lobo M., Pérez E., “On the Eigenfunctions Associated with the High Frequencies in Systems with a Concentrated Mass”, J. Math. Pures Appl., 78 (1999), 841–865 | DOI | MR | Zbl

[33] Gómez D., Lobo M., Pérez E., “On a Vibrating Plate with Concentrated Mass”, C. R. Acad. Sci. Paris. Série IIb, 328 (2000), 494–500

[34] Lobo M., Pérez E., “The skin effect in vibrating systems with many concentrated masses”, Math. Methods Appl. Sci., 24:1 (2001), 59–80 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[35] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., “On vibration of membrane with concentrated masses”, Bulletin des Sciences Mathematiques, 115:1 (1991), 1–27 | MR | Zbl

[36] Sanchez-Hubert J., Sánchez-Palencia E., Vibration and Coupling of Continuous System. Asymptotic methods, Springer-Verlag, Berlin–Heidelberg, 1989 | MR | Zbl

[37] Sanchez-Hubert J., “Perturbation des valeurs propres pour des systèmes avec masse concentrée”, C. R. Acad. Sci. Paris Ser. II. Mec. Phys. Chim. Sci. Univers Sci. Terre, 309:6 (1989), 507–510 | MR | Zbl

[38] Doronina E. I., Chechkin G. A., “O sobstvennykh kolebaniyakh tela s bolshim kolichestvom neperiodicheski raspolozhennykh kontsentrirovannykh mass”, Tr. Matem. in-ta im. V. A. Steklova RAN, 236 (2002), 158–166 | MR | Zbl

[39] Rybalko V., “Vibration of Elastic Systems with a Large Number of Tiny Heavy Inclusions”, Asymptotic Analysis, 32:1 (2002), 27–62 | MR | Zbl

[40] Chechkin G. A., Pérez E., Yablokova E. I., “Non-Periodic Boundary Homogenization and “Light” Concentrated Masses”, Indiana University Math. J., 54:2 (2005), 321–348 | DOI | MR | Zbl

[41] Peres M. E., Chechkin G. A., Yablokova (Doronina) E. I., “O sobstvennykh kolebaniyakh tela s “legkimi” kontsentrirovannymi massami na poverkhnosti”, UMN, 57:6 (2002), 195–196 | MR | Zbl

[42] Chechkin G. A., “Ob otsenke reshenii kraevykh zadach v oblastyakh s kontsentrirovannymi massami, periodicheski raspolozhennymi vdol granitsy. Sluchai “legkikh” mass”, Matem. zametki, 76:6 (2004), 928–944 | MR | Zbl

[43] Chechkin G. A., “O kolebaniyakh tel s kontsentrirovannymi massami, raspolozhennymi na granitse”, UMN, 50:4 (1995), 105–106 | MR

[44] Chechkin G. A., “Granichnoe usrednenie v oblastyakh s singulyarnoi plotnostyu”, Diff. uravn., 39:6 (2003), 855 | MR

[45] Chechkin G. A., “On vibration of partially fastened membrane with many “light” concentrated masses on the boundary”, C. R. Méc. Acad. Sci. Paris, 332:12 (2004), 949–954

[46] Chechkin G. A., “Rasscheplenie kratnogo sobstvennogo znacheniya v zadache o kontsentrirovannykh massakh”, UMN, 59:4 (2004), 205–206 | MR | Zbl

[47] Chechkin G. A., “Spektralnye svoistva ellipticheskoi zadachi s bystro ostsilliruyuschimi granichnymi usloviyami”, Kraevye zadachi dlya neklassicheskikh uravnenii v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1989, 197–200 | MR

[48] Gadylshin R. R., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametrom v granichnom uslovii”, Diff. uravn., 22:4 (1986), 640–652 | MR

[49] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Matem. zametki, 52:4 (1992), 42–55 | MR

[50] Planida M. Yu., “O skhodimosti reshenii singulyarno vozmuschennykh kraevykh zadach dlya laplasiana”, Matem. zametki, 71:6 (2002), 867–877 | MR | Zbl

[51] Planida M. Yu., “Asimptotika sobstvennykh znachenii dlya tsilindra, teploizolirovannogo na tonkoi poloske”, ZhVMiMF, 43:3 (2003), 422–432 | MR | Zbl

[52] Borisov D. I., “O kraevoi zadache v tsilindre s chastoi smenoi tipa granichnykh uslovii”, Matem. sb., 193:7 (2002), 37–68 | MR | Zbl

[53] Borisov D. I., “On a model boundary value problem for Laplacian with frequently alternating type of boundary condition”, Asymptotic Analysis, 35:1 (2003), 1–26 | MR | Zbl

[54] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[55] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[56] Chechkin G. A., “O kraevykh zadachakh dlya ellipticheskogo uravneniya vtorogo poryadka s ostsilliruyuschimi granichnymi usloviyami”, Neklassicheskie differentsialnye uravneniya v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1988, 95–104 | MR

[57] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[58] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR

[59] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1977 | MR | Zbl

[60] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[61] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[62] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[63] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. I: Dvumernyi sluchai”, Matem. sb., 99 (141) (1976), 514–537

[64] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103 (145) (1977), 265–284

[65] Ilin A. M., “Issledovanie asimptotiki resheniya ellipticheskoi kraevoi zadachi v oblasti s malym otverstiem”, Tr. sem. im. I. G. Petrovskogo, 1981, no. 6, 57–82

[66] Ilin A M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[67] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl

[68] Gadyl'shin R. R., “Asymptotics of the minimum eigenvalue for a circle with fast oscillating boundary conditions”, C. R. Acad. Sci. Paris. Ser. I, 323:3 (1996), 319–323 | MR

[69] Gadylshin R. R., “O kraevoi zadache dlya laplasiana s bystro ostsilliruyuschimi granichnymi usloviyami”, Dokl. RAN, 362:4 (1998), 456–459 | MR

[70] Gadylshin R. R., “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19 | MR

[71] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, I”, Tr. sem. I. G. Petrovskogo, 18 (1995), 3–78 | Zbl

[72] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[73] Borisov D. I., “Asimptotiki i otsenki sobstvennykh elementov laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izv. RAN. Ser. matem., 67:6 (2003), 23–70 | MR | Zbl