Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 805-846

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider vibrations of a membrane which contains many “light” concentrated masses on the boundary. We study the asymptotic behaviour of the frequencies of eigenvibrations of the membrane as the small parameter (which characterizes the diameter and density of the concentrated masses) tends to zero. We construct asymptotic expansions of eigenelements of the corresponding problems and carefully justify these expansions.
@article{IM2_2005_69_4_a7,
     author = {G. A. Chechkin},
     title = {Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. {Two-dimensional} case},
     journal = {Izvestiya. Mathematics },
     pages = {805--846},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/}
}
TY  - JOUR
AU  - G. A. Chechkin
TI  - Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 805
EP  - 846
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/
LA  - en
ID  - IM2_2005_69_4_a7
ER  - 
%0 Journal Article
%A G. A. Chechkin
%T Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case
%J Izvestiya. Mathematics 
%D 2005
%P 805-846
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/
%G en
%F IM2_2005_69_4_a7
G. A. Chechkin. Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 805-846. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/