Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_4_a7, author = {G. A. Chechkin}, title = {Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. {Two-dimensional} case}, journal = {Izvestiya. Mathematics }, pages = {805--846}, publisher = {mathdoc}, volume = {69}, number = {4}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/} }
TY - JOUR AU - G. A. Chechkin TI - Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case JO - Izvestiya. Mathematics PY - 2005 SP - 805 EP - 846 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/ LA - en ID - IM2_2005_69_4_a7 ER -
%0 Journal Article %A G. A. Chechkin %T Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case %J Izvestiya. Mathematics %D 2005 %P 805-846 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/ %G en %F IM2_2005_69_4_a7
G. A. Chechkin. Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many ``light'' concentrated masses situated on the boundary. Two-dimensional case. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 805-846. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a7/
[1] Krylov A. N., “O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh”, Izv. Nikolaevskoi morskoi akademii, 1913, no. 2, 325–348
[2] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR
[3] Sánchez-Palencia E., “Perturbation of eigenvalues in thermoelasticity and vibration of system with concentrated masses”, Trends and Application of pure Math. to Mechanics, Lecture notes in Physics, 195, Springer-Verlag, Berlin, 1984, 346–368 | MR
[4] Oleinik O. A., Lektsii po uravneniyam s chastnymi proizvodnymi, Izd-vo MGU, M., 1976 | MR
[5] Oleinik O. A., “O sobstvennykh kolebaniyakh tel s kontsentrirovannymi massami”, Sovremennye problemy prikladnoi matematiki i matematicheskoi fiziki, Nauka, M., 1988, 101–128 | MR
[6] Oleinik O. A., “O spektrakh nekotorykh singulyarno vozmuschennykh operatorov”, UMN, 42:3 (1987), 221–222
[7] Oleinik O. A., “Homogenization problems in elasticity. Spectrum of singularly perturbed operators”, Non-classical continuum mechanics, Lecture Notes series, 122, Cambridge Univ. Press, Cambridge, 1987, 188–205 | MR
[8] Oleinik O. A., “O chastotakh sobstvennykh kolebanii tel s kontsentrirovannymi massami”, Funktsionalnye i chislennye metody matematicheskoi fiziki, Nauk. dumka, Kiev, 1988, 165–171 | MR
[9] Golovatyi Yu. D., Spektralnye svoistva kolebatelnykh sistem s prisoedinennymi massami, Dis. ...kand. fiz.-mat. nauk, MGU, M., 1988
[10] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., Soboleva T. S., “O sobstvennykh kolebaniyakh struny s prisoedinennoi massoi”, Sib. matem. zhurn., 29:5 (1988), 71–91 | MR | Zbl
[11] Oleinik O. A., Soboleva T. S., “O sobstvennykh kolebaniyakh neodnorodnoi struny s konechnym chislom prisoedinennykh mass”, UMN, 43:4 (1988), 187–188 | MR
[12] Golovatyi Yu. D., “O sobstvennykh kolebaniyakh i sobstvennykh chastotakh uprugogo sterzhnya s prisoedinennoi massoi”, UMN, 43:4 (1988), 173–174 | MR
[13] Golovatyi Yu. D., “O sobstvennykh kolebaniyakh i sobstvennykh chastotakh zakreplennoi plastinki s prisoedinennoi massoi”, UMN, 43:5 (1988), 185–186 | MR | Zbl
[14] Nazarov S. A., “Concentrated masses problems for a spatial elastic body”, C. R. Acad. Sci. Paris. Ser. I. Math., 316:6 (1993), 627–632 | MR | Zbl
[15] Argatov I. I., Nazarov S. A., “Junction problem of shashlik (skewer) type”, C. R. Acad. Sci. Paris Ser. I. Math., 316:12 (1993), 1329–1334 | MR | Zbl
[16] Nazarov S. A., “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer., 27:6 (1993), 777–799 | MR | Zbl
[17] Golovatyi Yu. D., “Spektralnye svoistva kolebatelnykh sistem s prisoedinennymi massami: effekt lokalnykh kolebanii”, Tr. MMO, 54, URSS, M., 1992, 29–72 | Zbl
[18] Golovatyi Yu. D., “Spektralnaya zadacha Neimana dlya operatora Laplasa s singulyarno vozmuschennoi plotnostyu”, UMN, 45:4 (1990), 147–148 | MR | Zbl
[19] Nazarov S. A., “Ob odnoi zadache Sanches-Palensiya s kraevymi usloviyami Neimana”, Izv. vuzov. Matematika, 1989, no. 11, 60–66 | Zbl
[20] Rakhmanov N. U., O sobstvennykh kolebaniyakh sistem s kontsentrirovannymi massami, Dis. ...kand. fiz.-mat. nauk, MGU, M., 1991
[21] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptotika sobstvennykh znachenii i sobstvennykh funktsii v zadachakh o kolebaniyakh sredy s singulyarnym vozmuscheniem plotnosti”, UMN, 43:5 (1988), 189–190 | MR | Zbl
[22] Golovatyi Yu. D., Nazarov S. A., Oleinik O. A., “Asimptoticheskie razlozheniya sobstvennykh znachenii i sobstvennykh funktsii zadach o kolebaniyakh sredy s kontsentrirovannymi vozmuscheniyami”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 192 (1990), 42–60 | MR
[23] Sánchez-Palencia E., Tchatat H., “Vibration de systèmes elastiques avec masses concentrées”, Rendiconti del Seminario matematico della Universita e politecnico di Torino, 42:3 (1984), 43–63 | MR | Zbl
[24] Golovaty Y. D., Lavrenyuk A. S., “Asymptotic expansions of local eigenvibrations for plate with density perturbed in neighbourhood of one-dimensional manifold”, Mat. Stud., 13:1 (2000), 51–62 | MR | Zbl
[25] Leal C., Sanchez-Hubert J., “Perturbation of the Eigenvalue of a Membrane with a Concentrated Mass”, Quarterly Appl. Math., XLVII:1 (1989), 93–103 | MR
[26] Lobo M., Pérez E., “Asymptotic Behavior of the Vibrations of a Body Having Many Concentrated Masses Near the Boundary”, C. R. Acad. Sci. Paris. Série II, 314 (1992), 13–18 | Zbl
[27] Lobo M., Pérez E., “On Vibrations of a Body With Many Concentrated Masses Near the Boundary”, Math. Models and Methods in Appl. Sci., 3:2 (1993), 249–273 | DOI | MR | Zbl
[28] Lobo M., Pérez E., “Vibrations of a Body With Many Concentrated Masses Near the Boundary: High Frequency Vibrations”, Spectral Analysis of Complex Structures, Hermann, Paris, 1995, 85–101 | MR | Zbl
[29] Lobo M., Pérez E., “Vibrations of a Membrane With Many Concentrated Masses Near the Boundary”, Math. Models and Methods in Appl. Sci., 5:5 (1995), 565–585 | DOI | MR | Zbl
[30] Lobo M., Pérez E., “High Frequency Vibrations in a Stiff Problem”, Math. Models and Methods in Appl. Sci., 7:2 (1997), 291–311 | DOI | MR | Zbl
[31] Lobo M., Pérez E., “A Skin Effect for Systems with Many Concentrated Masses”, C. R. Acad. Sci. Paris. Série IIb, 327 (1999), 771–776 | Zbl
[32] Gómez D., Lobo M., Pérez E., “On the Eigenfunctions Associated with the High Frequencies in Systems with a Concentrated Mass”, J. Math. Pures Appl., 78 (1999), 841–865 | DOI | MR | Zbl
[33] Gómez D., Lobo M., Pérez E., “On a Vibrating Plate with Concentrated Mass”, C. R. Acad. Sci. Paris. Série IIb, 328 (2000), 494–500
[34] Lobo M., Pérez E., “The skin effect in vibrating systems with many concentrated masses”, Math. Methods Appl. Sci., 24:1 (2001), 59–80 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[35] Oleinik O. A., Sanchez-Hubert J., Yosifian G. A., “On vibration of membrane with concentrated masses”, Bulletin des Sciences Mathematiques, 115:1 (1991), 1–27 | MR | Zbl
[36] Sanchez-Hubert J., Sánchez-Palencia E., Vibration and Coupling of Continuous System. Asymptotic methods, Springer-Verlag, Berlin–Heidelberg, 1989 | MR | Zbl
[37] Sanchez-Hubert J., “Perturbation des valeurs propres pour des systèmes avec masse concentrée”, C. R. Acad. Sci. Paris Ser. II. Mec. Phys. Chim. Sci. Univers Sci. Terre, 309:6 (1989), 507–510 | MR | Zbl
[38] Doronina E. I., Chechkin G. A., “O sobstvennykh kolebaniyakh tela s bolshim kolichestvom neperiodicheski raspolozhennykh kontsentrirovannykh mass”, Tr. Matem. in-ta im. V. A. Steklova RAN, 236 (2002), 158–166 | MR | Zbl
[39] Rybalko V., “Vibration of Elastic Systems with a Large Number of Tiny Heavy Inclusions”, Asymptotic Analysis, 32:1 (2002), 27–62 | MR | Zbl
[40] Chechkin G. A., Pérez E., Yablokova E. I., “Non-Periodic Boundary Homogenization and “Light” Concentrated Masses”, Indiana University Math. J., 54:2 (2005), 321–348 | DOI | MR | Zbl
[41] Peres M. E., Chechkin G. A., Yablokova (Doronina) E. I., “O sobstvennykh kolebaniyakh tela s “legkimi” kontsentrirovannymi massami na poverkhnosti”, UMN, 57:6 (2002), 195–196 | MR | Zbl
[42] Chechkin G. A., “Ob otsenke reshenii kraevykh zadach v oblastyakh s kontsentrirovannymi massami, periodicheski raspolozhennymi vdol granitsy. Sluchai “legkikh” mass”, Matem. zametki, 76:6 (2004), 928–944 | MR | Zbl
[43] Chechkin G. A., “O kolebaniyakh tel s kontsentrirovannymi massami, raspolozhennymi na granitse”, UMN, 50:4 (1995), 105–106 | MR
[44] Chechkin G. A., “Granichnoe usrednenie v oblastyakh s singulyarnoi plotnostyu”, Diff. uravn., 39:6 (2003), 855 | MR
[45] Chechkin G. A., “On vibration of partially fastened membrane with many “light” concentrated masses on the boundary”, C. R. Méc. Acad. Sci. Paris, 332:12 (2004), 949–954
[46] Chechkin G. A., “Rasscheplenie kratnogo sobstvennogo znacheniya v zadache o kontsentrirovannykh massakh”, UMN, 59:4 (2004), 205–206 | MR | Zbl
[47] Chechkin G. A., “Spektralnye svoistva ellipticheskoi zadachi s bystro ostsilliruyuschimi granichnymi usloviyami”, Kraevye zadachi dlya neklassicheskikh uravnenii v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1989, 197–200 | MR
[48] Gadylshin R. R., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametrom v granichnom uslovii”, Diff. uravn., 22:4 (1986), 640–652 | MR
[49] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Matem. zametki, 52:4 (1992), 42–55 | MR
[50] Planida M. Yu., “O skhodimosti reshenii singulyarno vozmuschennykh kraevykh zadach dlya laplasiana”, Matem. zametki, 71:6 (2002), 867–877 | MR | Zbl
[51] Planida M. Yu., “Asimptotika sobstvennykh znachenii dlya tsilindra, teploizolirovannogo na tonkoi poloske”, ZhVMiMF, 43:3 (2003), 422–432 | MR | Zbl
[52] Borisov D. I., “O kraevoi zadache v tsilindre s chastoi smenoi tipa granichnykh uslovii”, Matem. sb., 193:7 (2002), 37–68 | MR | Zbl
[53] Borisov D. I., “On a model boundary value problem for Laplacian with frequently alternating type of boundary condition”, Asymptotic Analysis, 35:1 (2003), 1–26 | MR | Zbl
[54] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl
[55] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[56] Chechkin G. A., “O kraevykh zadachakh dlya ellipticheskogo uravneniya vtorogo poryadka s ostsilliruyuschimi granichnymi usloviyami”, Neklassicheskie differentsialnye uravneniya v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1988, 95–104 | MR
[57] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[58] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR
[59] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1977 | MR | Zbl
[60] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[61] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[62] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[63] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. I: Dvumernyi sluchai”, Matem. sb., 99 (141) (1976), 514–537
[64] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103 (145) (1977), 265–284
[65] Ilin A. M., “Issledovanie asimptotiki resheniya ellipticheskoi kraevoi zadachi v oblasti s malym otverstiem”, Tr. sem. im. I. G. Petrovskogo, 1981, no. 6, 57–82
[66] Ilin A M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[67] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Matem. sb., 184:6 (1993), 99–150 | MR | Zbl
[68] Gadyl'shin R. R., “Asymptotics of the minimum eigenvalue for a circle with fast oscillating boundary conditions”, C. R. Acad. Sci. Paris. Ser. I, 323:3 (1996), 319–323 | MR
[69] Gadylshin R. R., “O kraevoi zadache dlya laplasiana s bystro ostsilliruyuschimi granichnymi usloviyami”, Dokl. RAN, 362:4 (1998), 456–459 | MR
[70] Gadylshin R. R., “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19 | MR
[71] Nazarov S. A., “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei, I”, Tr. sem. I. G. Petrovskogo, 18 (1995), 3–78 | Zbl
[72] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[73] Borisov D. I., “Asimptotiki i otsenki sobstvennykh elementov laplasiana s chastoi neperiodicheskoi smenoi granichnykh uslovii”, Izv. RAN. Ser. matem., 67:6 (2003), 23–70 | MR | Zbl