Smoothing of~Hilbert-valued uniformly continuous maps
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 791-803.

Voir la notice de l'article provenant de la source Math-Net.Ru

We approximate (in the uniform norm) Hilbert-valued uniformly continuous maps defined on $l_p$, $p\geqslant2$, by maps with bounded first derivatives and maximal local smoothness, which coincides with the smoothness of the space. The result obtained is definitive as far as the smoothness of smoothing maps is concerned since there is a 1-Lipschitzian map from $l_p$, $p\geqslant2$, to $l_2$ that cannot be approximated in the uniform metric by a map whose first derivative is uniformly continuous.
@article{IM2_2005_69_4_a6,
     author = {I. G. Tsar'kov},
     title = {Smoothing {of~Hilbert-valued} uniformly continuous maps},
     journal = {Izvestiya. Mathematics },
     pages = {791--803},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a6/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Smoothing of~Hilbert-valued uniformly continuous maps
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 791
EP  - 803
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a6/
LA  - en
ID  - IM2_2005_69_4_a6
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Smoothing of~Hilbert-valued uniformly continuous maps
%J Izvestiya. Mathematics 
%D 2005
%P 791-803
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a6/
%G en
%F IM2_2005_69_4_a6
I. G. Tsar'kov. Smoothing of~Hilbert-valued uniformly continuous maps. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 791-803. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a6/

[1] Ills Dzh., “Osnovaniya globalnogo analiza”, UMN, 24:3(147) (1969), 157–210 | MR

[2] Kurzweil J., “On approximation in real Banach spaces”, Studia Math., 14:2 (1954), 214–231 | MR

[3] Valentine F. A., “A Lipschitz conditions preserving extension for a vector function”, Amer. J. Math., 67:1 (1945), 83–93 | DOI | MR | Zbl

[4] Nemirovskii A. S., Gladkaya i polinomialnaya approksimatsiya nepreryvnykh funktsii na gilbertovom prostranstve, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1973

[5] Semenov S. M., “O simmetricheskikh funktsiyakh klassa $D^2_u(H)$”, Funktsion. analiz i ego prilozh., 6:3 (1972), 85–86 | MR | Zbl

[6] Semenov S. M., Simmetricheskie funktsii na prostranstvakh $L_p$, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1973

[7] Nemirovskii A. S., Semenov S. M., “O polinomialnoi approksimatsii na gilbertovom prostranstve”, Matem. sb., 92:2 (1973), 257–281 | MR | Zbl

[8] Tsarkov I. G., “Sglazhivanie ravnomerno nepreryvnykh otobrazhenii v prostranstvakh $L_p$”, Matem. zametki, 54:3 (1993), 123–140 | MR

[9] Tsarkov I. G., “Sglazhivanie abstraktnykh funktsii”, Matem. sb., 185:11 (1994), 119–144 | MR

[10] Tsarkov I. G., “Lineinye metody v nekotorykh zadachakh sglazhivaniya”, Matem. zametki, 56:6 (1994), 64–87 | MR

[11] Tsarkov I. G., “Priblizhenie vektornoznachnykh funktsii mnogochlenami”, Funktsion. analiz i ego prilozh., 29:3 (1995), 93–95 | MR

[12] Tsarkov I. G., “O prodolzhenii i sglazhivanii vektornoznachnykh funktsii”, Izv. RAN. Ser. matem., 59:4 (1995), 187–220 | MR

[13] Tsarkov I. G., “Nekotorye voprosy prodolzheniya”, Matem. zametki, 58:6 (1995), 906–916 | MR

[14] Tsarkov I. G., “O gladkikh vyborkakh iz mnozhestv pochti chebyshevskikh tsentrov”, Vestn. MGU. Ser.1. Matematika. Mekhanika, 1996, no. 2, 92–94 | MR

[15] Tsarkov I. G., “Sglazhivanie funktsii na gilbertovom share”, Tr. MIAN, 219, Nauka, M., 1997, 410–419 | MR

[16] Tsarkov I. G., “Sglazhivanie funktsii v konechnomernykh prostranstvakh”, Izv. RAN. Ser. matem., 61:1 (1997), 199–214 | MR

[17] Tsarkov I. G., “Prodolzhenie gilbertovoznachnykh lipshitsevykh otobrazhenii”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1999, no. 6, 9–16 | MR

[18] Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, V. 1, Amer. Math. Soc., Colloquium Publications, 48, 2000 | MR | Zbl

[19] Lindenstrauss J., Tzafriri L., Classical Banach Spaces I and II, Springer-Verlag, Berlin, 1996 | MR