Blow-up of~solutions of~a~class of~strongly non-linear dissipative wave
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 733-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the abstract Cauchy problem for a first-order ordinary differential equation with non-linear operator coefficients. The results are applied to some strongly non-linear dissipative wave equations of Sobolev type. We obtain sufficient conditions for the problem to be globally soluble, as well as sufficient conditions for the solutions to blow up in finite time. These conditions are close to being necessary. Under certain supplementary assumptions on the non-linear operators, we prove that the problem is soluble in any finite cylinder. Under certain conditions on the norm of the initial functions, we prove that the solution of the problem blows up in finite time. We give examples of equations of Sobolev type satisfying these conditions.
@article{IM2_2005_69_4_a4,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {Blow-up of~solutions of~a~class of~strongly non-linear dissipative wave},
     journal = {Izvestiya. Mathematics },
     pages = {733--770},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - Blow-up of~solutions of~a~class of~strongly non-linear dissipative wave
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 733
EP  - 770
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a4/
LA  - en
ID  - IM2_2005_69_4_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T Blow-up of~solutions of~a~class of~strongly non-linear dissipative wave
%J Izvestiya. Mathematics 
%D 2005
%P 733-770
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a4/
%G en
%F IM2_2005_69_4_a4
M. O. Korpusov; A. G. Sveshnikov. Blow-up of~solutions of~a~class of~strongly non-linear dissipative wave. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 733-770. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a4/

[1] Korpusov M. O., Sveshnikov A. G., “Trekhmernye nelineinye evolyutsionnye uravneniya psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki”, ZhVMiMF, 43:12 (2003), 1835–1869 | MR | Zbl

[2] Korpusov M. O., Sveshnikov A. G., “Trekhmernye nelineinye evolyutsionnye uravneniya psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki, 2”, ZhVMiMF, 44:11 (2004), 2041–2048 | MR | Zbl

[3] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[4] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR

[5] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[6] Pletner Yu. D., “Fundamentalnye resheniya operatorov tipa Soboleva i nekotorye nachalno-kraevye zadachi”, ZhVMiMF, 32:12 (1992), 1885–1899 | MR | Zbl

[7] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[8] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational. Mech. Analys., 51 (1973), 371–386 | MR | Zbl

[9] Levine H. A., Park S. R., Serrin J., “Global existence and nonexistence theorems for qusilinear evolution equations of formally parabolic type”, J. Diff. equat., 142 (1998), 212–229 | DOI | MR | Zbl

[10] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravnenii tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Matem. zametki, 65:1 (1999), 70–75 | MR | Zbl

[11] Korpusov M. O., “O razrushenii reshenii klassa silno nelineinykh uravnenii tipa Soboleva”, Izv. RAN. Ser. matem., 68:4 (2004), 151–204 | MR

[12] Korpusov M. O., Sveshnikov A. G., “Razrushenie reshenii abstraktnykh zadach Koshi dlya nelineinykh differentsialno-operatornykh uravnenii”, Dokl. RAN, 401:1 (2005), 12–15 | MR

[13] Korpusov M. O., Sveshnikov A. G., “O razrushenii reshenii odnogo klassa kvazilineinykh volnovykh dissipativnykh uravnenii psevdoparabolicheskogo tipa s istochnikami”, Dokl. RAN, 2005 (to appear)

[14] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 1–383 | MR | Zbl

[15] Shishmarëv I. A., “Ob odnom nelineinom uravnenii tipa Soboleva”, Diff. uravn., 41:1 (2005), 1–3

[16] Karch G., “Asymptotic behavior of solutions to some pseudoparabolic equations”, Math. Methods Appl. Sci., 20:3 (1997), 271–289 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Goldstein J. A., Kajikiya R., Oharu S., “On some nonlinear dispersive equations in several space variables”, Diff. and Integ. Equat., 3:4 (1990), 617–632 | MR | Zbl

[18] Zhang L., “Decay of solutions of generalized BBMB equations in $n$-space dimensions”, Nonlinear Anal. TMA, 20 (1995), 1343–1390 | DOI | MR

[19] Naumkin P. I., “Large-time asymptotic behaviour of a step for the Benjamin–Bona–Mahony–Burgers equation”, Proc. R. Soc. Edinb. Sect. A, 126:1 (1996), 1–18 | MR | Zbl

[20] Avrin J., Goldstein J. A., “Global existence for the Benjamin–Bona–Mahony equation in arbitrary dimensions”, Nonlinear Anal. TMA, 9:8 (1985), 861–865 | DOI | MR | Zbl

[21] Albert J. P., “On the decay of solutions of the generalized Benjamin–Bona–Mahony equation”, J. Math. Anal. Appl., 141:2 (1989), 527–537 | DOI | MR | Zbl

[22] Lee H. Y., Ohm M. R., Shin J. Y., “The convergence of fully discrete Galerkin approximations of the Rosenau equation”, Korean J. Comput. Appl. Math., 6:1 (1999), 1–13 | MR | Zbl

[23] Mei M., “Long-time behavior of solution for Rosenau–Burgers equation, II”, J. Appl. Analys., 68:3–4 (1998), 333–356 | MR | Zbl

[24] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[25] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[26] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[27] Postnikov M. M., Lektsii po geometrii. Semestr 2. Lineinaya algebra, Nauka, M., 1986 | MR | Zbl

[28] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR

[29] Demidovich V. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[30] Moren K., Metody gilbertova prostranstva, Mir, M., 1965 | MR

[31] Dyachenko M. I., Ulyanov P. L., Mera i integral, Faktorial, M., 1998

[32] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984 | Zbl

[33] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR