Sign changes of the function $S(t)$ on short intervals
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 719-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study sign changes of the function $S(t)$ on short intervals of the real line. It is proved that, for almost all values of $T$, there is a point at which $S(t)$ changes sign and whose distance from $T$ does not exceed $4.39\ln\ln\ln\ln T$.
@article{IM2_2005_69_4_a3,
     author = {M. A. Korolev},
     title = {Sign changes of the function $S(t)$ on short intervals},
     journal = {Izvestiya. Mathematics },
     pages = {719--731},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Sign changes of the function $S(t)$ on short intervals
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 719
EP  - 731
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/
LA  - en
ID  - IM2_2005_69_4_a3
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Sign changes of the function $S(t)$ on short intervals
%J Izvestiya. Mathematics 
%D 2005
%P 719-731
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/
%G en
%F IM2_2005_69_4_a3
M. A. Korolev. Sign changes of the function $S(t)$ on short intervals. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 719-731. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/

[1] Bohr H., Landau E., “Beiträge zur Theorie der Riemannschen Zetafunktion”, Math. Ann., 74:1 (1913), 3–30 | DOI | MR | Zbl

[2] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl

[3] Karatsuba A. A., “O funktsii $S(t)$”, Izv. RAN. Ser. matem., 60:5 (1996), 27–56 | MR | Zbl

[4] Karatsuba A. A., “Plotnostnaya teorema i povedenie argumenta dzeta-funktsii Rimana”, Matem. zametki, 60:3 (1996), 448–449 | MR | Zbl

[5] Korolev M. A., “Ob argumente dzeta-funktsii Rimana na kriticheskoi pryamoi”, Tr. MIAN, 239, Nauka, M., 2002, 215–238 | MR

[6] Korolev M. A., “O chisle peremen znaka funktsii $S(t)$ na korotkom promezhutke”, Dokl. RAN, 382:4 (2002), 446–447 | MR | Zbl

[7] Korolev M. A., “Ob argumente dzeta-funktsii Rimana na kriticheskoi pryamoi”, Izv. RAN. Ser.matem., 67:2 (2003), 21–60 | MR | Zbl

[8] Korolev M. A., “O povedenii funktsii $S(t)$ na korotkikh promezhutkakh”, Dokl. RAN, 390:5 (2003), 588–589 | MR | Zbl

[9] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. di Salerno, Salerno, 1992, 365–387 | MR

[10] Mueller J. H., “On the Riemann zeta-function $\zeta (s)$ – gaps between sign changes of $S(t)$”, Mathematika, 29:58 (1983), 264–269 | MR

[11] Tsang K.-M., “Some $\Omega$-theorems for the Riemann zeta-function”, Acta Arith., 46:4 (1986), 369–395 | MR | Zbl

[12] Ghosh A., “On Riemann's zeta-function – sign changes of $S(T)$”, Recent Progress in Analytic Number Theory, 1, Academic Press, N.Y., 1981, 29–46 | MR

[13] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953