Sign changes of the function $S(t)$ on short intervals
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 719-731

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study sign changes of the function $S(t)$ on short intervals of the real line. It is proved that, for almost all values of $T$, there is a point at which $S(t)$ changes sign and whose distance from $T$ does not exceed $4.39\ln\ln\ln\ln T$.
@article{IM2_2005_69_4_a3,
     author = {M. A. Korolev},
     title = {Sign changes of the function $S(t)$ on short intervals},
     journal = {Izvestiya. Mathematics },
     pages = {719--731},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Sign changes of the function $S(t)$ on short intervals
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 719
EP  - 731
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/
LA  - en
ID  - IM2_2005_69_4_a3
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Sign changes of the function $S(t)$ on short intervals
%J Izvestiya. Mathematics 
%D 2005
%P 719-731
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/
%G en
%F IM2_2005_69_4_a3
M. A. Korolev. Sign changes of the function $S(t)$ on short intervals. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 719-731. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a3/