On symplectic coverings of the projective plane
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 667-701.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a resolution of singularities of any finite covering of the projective complex plane branched along a Hurwitz curve $\overline H$, and possibly along the line “at infinity”, can be embedded as a symplectic submanifold in some projective algebraic manifold equipped with an integer Kähler symplectic form. (If $\overline H$ has negative nodes, then the covering is assumed to be non-singular over them.) For cyclic coverings, we can realize these embeddings in a rational complex 3-fold. Properties of the Alexander polynomial of $\overline H$ are investigated and applied to the calculation of the first Betti number $b_1(\overline X_n)$, where $\overline X_n$ is a resolution of singularities of an $n$-sheeted cyclic covering of $\mathbb C\mathbb P^2$ branched along $\overline H$, and possibly along the line “at infinity”. We prove that $b_1(\overline X_n)$ is even if $\overline H$ is an irreducible Hurwitz curve but, in contrast to the algebraic case, $b_1(\overline X_n)$ may take any non-negative value in the case when $\overline H$ consists of several components.
@article{IM2_2005_69_4_a1,
     author = {G.-M. Greuel and Vik. S. Kulikov},
     title = {On symplectic coverings of the projective plane},
     journal = {Izvestiya. Mathematics },
     pages = {667--701},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/}
}
TY  - JOUR
AU  - G.-M. Greuel
AU  - Vik. S. Kulikov
TI  - On symplectic coverings of the projective plane
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 667
EP  - 701
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/
LA  - en
ID  - IM2_2005_69_4_a1
ER  - 
%0 Journal Article
%A G.-M. Greuel
%A Vik. S. Kulikov
%T On symplectic coverings of the projective plane
%J Izvestiya. Mathematics 
%D 2005
%P 667-701
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/
%G en
%F IM2_2005_69_4_a1
G.-M. Greuel; Vik. S. Kulikov. On symplectic coverings of the projective plane. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 667-701. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/

[1] Auroux D., “Symplectic $4$-manifolds as branched coverings of $\mathbb P^2$”, Invent. Math., 139 (2000), 551–602 | DOI | MR | Zbl

[2] Auroux D., Katzarkov L., “Branched coverings of $\mathbb P^2$ and invariants of symplectic $4$-manifolds”, Invent. Math., 142 (2000), 631–673 | DOI | MR | Zbl

[3] Burde G., Zieschang H., Knots, Walter de Gruyter, Berlin–N. Y., 1985 | MR | Zbl

[4] Crowell R., Fox R., Knot Theory, Ginn, Boston, 1963 | Zbl

[5] Dimca A., Singularities and Topology of Hypersurfaces, Springer-Verlag, Berlin–N.Y, 1992 | MR | Zbl

[6] Esnault E., “Fibre de Milnor d'un cone sur une courbe plane singuliére”, Invent. Math., 68 (1982), 477–496 | DOI | MR | Zbl

[7] Kohno T., “An algebraic computation of the Alexander polynomial of a plane algebraic curve”, Proc. Japan Acad. Ser. A. Math. Sci., 59 (1983), 94–97 | DOI | MR | Zbl

[8] Kulikov V. S., Kulikov Vik. S., “O monodromii i smeshannoi strukture Khodzha v kogomologiyakh beskonechnogo tsiklicheskogo nakrytiya dopolneniya k ploskoi krivoi”, Izv. RAN. Ser. matem., 59:2 (1995), 143–162 | MR | Zbl

[9] Kulikov Vik. S., “Mnogochleny Aleksandera ploskikh algebraicheskikh krivykh”, Izv. RAN. Ser. matem., 57:1 (1993), 76–101 | MR | Zbl

[10] Kulikov Vik. S., “Geometricheskaya realizatsiya $C$-grupp”, Izv. RAN. Ser. matem., 58:4 (1994), 194–203 | MR | Zbl

[11] Kulikov Vik. S., “Formula razlozheniya na mnozhiteli polnogo povorota s udvoennym chislom nitei”, Izv. RAN. Ser. matem., 68:1 (2004), 123–158 | MR

[12] Kulikov Vik. S., Kharlamov V. M., “O breid-monodromnykh razlozheniyakh na mnozhiteli”, Izv. RAN. Ser. matem., 67:3 (2003), 79–118 | MR | Zbl

[13] Kulikova O. V., “O fundamentalnykh gruppakh dopolnenii k krivym Gurvitsa”, Izv. RAN. Ser. matem., 69:1 (2005), 125–132 | MR | Zbl

[14] Lê Dũng Tráng, “Sur les noeuds algébriques”, Compositio Math., 25 (1972), 281–321 | MR | Zbl

[15] Libgober A., “Alexander polynomials of plane algebraic curves and cyclic multiple planes”, Duke Math. J., 49 (1982), 833–851 | DOI | MR | Zbl

[16] McDuff D., Salamon D., Introduction to Symplectic Topology, second edition, Oxford Math. Monographs, Clarendon Press, Oxford, 1998 | MR

[17] Milnor J., “Infinite cyclic coverings”, Conf. on the Topology of manifolds, Weber Schmidt, Boston, 1968, 115–133 | MR

[18] Moishezon B., “The arithmetic of braids and a statement of Chisini”, Contemporary Math., 164 (1994), 151–175 | MR | Zbl

[19] Rolfsen D., Knots and Links, Math. Lect. Series, 7, Publish or Perish, Houston, 1990 | MR | Zbl

[20] Randell R., “Milnor fibres and Alexander polynomials of plane curves”, Arcata Singularities Conference, Proc. Symp. Pure Math. Part 2, 40, AMS, 1983, 415–420 | MR

[21] Stein K., “Analytische Zerlegungen komplexer Räume”, Math. Ann., 132 (1956), 63–93 | DOI | MR | Zbl

[22] Zariski O., Algebraic surfaces, Springer-Verlag, N.Y., 1971 | MR | Zbl