On symplectic coverings of the projective plane
Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 667-701

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a resolution of singularities of any finite covering of the projective complex plane branched along a Hurwitz curve $\overline H$, and possibly along the line “at infinity”, can be embedded as a symplectic submanifold in some projective algebraic manifold equipped with an integer Kähler symplectic form. (If $\overline H$ has negative nodes, then the covering is assumed to be non-singular over them.) For cyclic coverings, we can realize these embeddings in a rational complex 3-fold. Properties of the Alexander polynomial of $\overline H$ are investigated and applied to the calculation of the first Betti number $b_1(\overline X_n)$, where $\overline X_n$ is a resolution of singularities of an $n$-sheeted cyclic covering of $\mathbb C\mathbb P^2$ branched along $\overline H$, and possibly along the line “at infinity”. We prove that $b_1(\overline X_n)$ is even if $\overline H$ is an irreducible Hurwitz curve but, in contrast to the algebraic case, $b_1(\overline X_n)$ may take any non-negative value in the case when $\overline H$ consists of several components.
@article{IM2_2005_69_4_a1,
     author = {G.-M. Greuel and Vik. S. Kulikov},
     title = {On symplectic coverings of the projective plane},
     journal = {Izvestiya. Mathematics },
     pages = {667--701},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/}
}
TY  - JOUR
AU  - G.-M. Greuel
AU  - Vik. S. Kulikov
TI  - On symplectic coverings of the projective plane
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 667
EP  - 701
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/
LA  - en
ID  - IM2_2005_69_4_a1
ER  - 
%0 Journal Article
%A G.-M. Greuel
%A Vik. S. Kulikov
%T On symplectic coverings of the projective plane
%J Izvestiya. Mathematics 
%D 2005
%P 667-701
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/
%G en
%F IM2_2005_69_4_a1
G.-M. Greuel; Vik. S. Kulikov. On symplectic coverings of the projective plane. Izvestiya. Mathematics , Tome 69 (2005) no. 4, pp. 667-701. http://geodesic.mathdoc.fr/item/IM2_2005_69_4_a1/