Zeros of the derivatives of the Riemann $\xi$-function
Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 539-605

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the proportion of the zeros of the $k$th derivative of the Riemann $\xi$-function (where $k\geqslant1$ is an integer) that are on the critical line is greater than $1-\frac{3}{5}\,k^{-2}$.
@article{IM2_2005_69_3_a3,
     author = {I. S. Rezvyakova},
     title = {Zeros of the derivatives of the {Riemann} $\xi$-function},
     journal = {Izvestiya. Mathematics },
     pages = {539--605},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a3/}
}
TY  - JOUR
AU  - I. S. Rezvyakova
TI  - Zeros of the derivatives of the Riemann $\xi$-function
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 539
EP  - 605
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a3/
LA  - en
ID  - IM2_2005_69_3_a3
ER  - 
%0 Journal Article
%A I. S. Rezvyakova
%T Zeros of the derivatives of the Riemann $\xi$-function
%J Izvestiya. Mathematics 
%D 2005
%P 539-605
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a3/
%G en
%F IM2_2005_69_3_a3
I. S. Rezvyakova. Zeros of the derivatives of the Riemann $\xi$-function. Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 539-605. http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a3/