Zeros of the derivatives of the Riemann $\xi$-function
Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 539-605
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the proportion of the zeros of the $k$th
derivative of the Riemann $\xi$-function (where $k\geqslant1$ is an integer)
that are on the critical line is greater than $1-\frac{3}{5}\,k^{-2}$.
@article{IM2_2005_69_3_a3,
author = {I. S. Rezvyakova},
title = {Zeros of the derivatives of the {Riemann} $\xi$-function},
journal = {Izvestiya. Mathematics },
pages = {539--605},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a3/}
}
I. S. Rezvyakova. Zeros of the derivatives of the Riemann $\xi$-function. Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 539-605. http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a3/