The equation of the $p$-adic open string for the scalar tachyon field
Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 487-512.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of solutions of the one-dimensional non-linear pseudodifferential equation describing the dynamics of the $p$-adic open string for the scalar tachyon field $p^{\frac12\partial^2_t}\Phi=\Phi^p$. We explain the role of real zeros of the entire function $\Phi^p(z)$ and the behaviour of solutions $\Phi(t)$ in the neighbourhood of these zeros. We point out that discontinuous solutions can appear if $p$ is even. We use the method of expanding the solution $\Phi$ and the function $\Phi^p$ in Hermite polynomials and modified Hermite polynomials and establish a connection between the coefficients of these expansions (integral conservation laws). For $p=2$ we construct an infinite system of non-linear equations in the unknown Hermite coefficients and study its structure. We consider the 3-approximation. We indicate a connection between the problems stated and a non-linear boundary-value problem for the heat equation.
@article{IM2_2005_69_3_a1,
     author = {V. S. Vladimirov},
     title = {The equation of the $p$-adic open string for the scalar tachyon field},
     journal = {Izvestiya. Mathematics },
     pages = {487--512},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a1/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - The equation of the $p$-adic open string for the scalar tachyon field
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 487
EP  - 512
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a1/
LA  - en
ID  - IM2_2005_69_3_a1
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T The equation of the $p$-adic open string for the scalar tachyon field
%J Izvestiya. Mathematics 
%D 2005
%P 487-512
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a1/
%G en
%F IM2_2005_69_3_a1
V. S. Vladimirov. The equation of the $p$-adic open string for the scalar tachyon field. Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 487-512. http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a1/

[1] Brekke L., Freund P. G. O., Olson M., Witten E., “Non-Archimedian string dynamics”, Nucl. Phys. B, 302:3 (1988), 365–402 | DOI | MR

[2] Frampton P. H., Okada Y., “Effective scalar field theory of $p$-adic string”, Phys. Rev. D, 37:10 (1988), 3077–3079 | DOI | MR

[3] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[4] Brekke L., Freund P. G. O., “$p$-Adic Numbers in Physics”, Phys. Rep. (Rev. Sect. Phys. Lett.), 233:1 (1993), 1–66 | MR

[5] Moeller N., Zwiebach B., “Dynamics with Infinitely Many Time Derivatives and Rolling Tachyons”, Paper 034, JHEP, 10 (2002), 39 pp. | MR

[6] Sen A., “Rolling Tachyon”, Paper 048, JHEP, 4 (2002), 18 pp. | MR

[7] Ghoshal D., Sen A., “Tachyon Condensation and Brane Descent Relations in $p$-Adic String Theory”, Nucl. Phys. B, 584:1–2 (2000), 300–312 | DOI | MR | Zbl

[8] Aref'eva I. Ja., Joukovskaja L. V., Koshelev A. S., “Time Evolution in Superstring Field Theory on non-BPS brane. I: Rolling Tachyon and Energy-Momentum Conservation”, Paper 012, JHEP, 9 (2003), 15 pp. | MR

[9] Vladimirov V. S., Volovich Ya. I., “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, TMF, 138:3 (2004), 355–368 | MR

[10] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl

[12] Gradshtein I. S., Ryzhik M. I., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1963 | MR

[13] Minahan J. A., “Mode Interactions of the Tachyon Condensate in $p$-Adic String Theory”, Paper 028, JHEP, 3 (2001), 16 pp. | MR

[14] Moeller N., Schnabl M., “Tachyon condensation in open-closed $p$-adic string theory”, Paper 011, JHEP, 1 (2004), 18 pp. | MR

[15] Barnaby N., “Caustic Formation in Tachyon Effective Field Theories”, Paper 025, JHEP, 7 (2004), 23 pp. ; E-print hep-th/0406120 | MR