Harmonic analysis of causal operators and their spectral properties
Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 439-486

Voir la notice de l'article provenant de la source Math-Net.Ru

The definition and study of causal operators are based on the representation theory of group algebras. We study the structure of the spectra of causal operators, obtain conditions for causal invertibility and state criteria for a causal operator to belong to the radical.
@article{IM2_2005_69_3_a0,
     author = {A. G. Baskakov and I. A. Krishtal},
     title = {Harmonic analysis of causal operators and their spectral properties},
     journal = {Izvestiya. Mathematics },
     pages = {439--486},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - I. A. Krishtal
TI  - Harmonic analysis of causal operators and their spectral properties
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 439
EP  - 486
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a0/
LA  - en
ID  - IM2_2005_69_3_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A I. A. Krishtal
%T Harmonic analysis of causal operators and their spectral properties
%J Izvestiya. Mathematics 
%D 2005
%P 439-486
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a0/
%G en
%F IM2_2005_69_3_a0
A. G. Baskakov; I. A. Krishtal. Harmonic analysis of causal operators and their spectral properties. Izvestiya. Mathematics , Tome 69 (2005) no. 3, pp. 439-486. http://geodesic.mathdoc.fr/item/IM2_2005_69_3_a0/